吉林大学学报(地球科学版) ›› 2019, Vol. 49 ›› Issue (6): 1540-1551.doi: 10.13278/j.cnki.jjuese.20180232

• 地质与资源 • 上一篇    下一篇

致密砂岩气储层气水相渗特征及其影响因素——以鄂尔多斯盆地苏里格气田陕234-235井区盒8段、山1段为例

计玮   

  1. 中国石油测井有限公司长庆分公司, 西安 710201
  • 收稿日期:2018-08-31 发布日期:2019-11-30
  • 作者简介:计玮(1990-),男,助理工程师,主要从事测井资料处理解释及研究工作,E-mail:jiweicq@cnpc.com.cn
  • 基金资助:
    陕西省自然科学基础研究计划青年人才项目(2016JQ4022)

Gas Water Relative Flow of Tight Sandstone Gas Reservoirs and Its Influencing Factors: Case Study of Member 8 of Permian Xiashihezi Formation and Member 1 of Permian Shanxi Formation in Shaan Well 234-235 Area of Sulige Gas-Field in Ordos Basin

Ji Wei   

  1. Changqing Division of China Petroleum Group Logging Co., Ltd., Xi'an 710201, China
  • Received:2018-08-31 Published:2019-11-30
  • Supported by:
    Supported by Young Talent Project of Natural Science Basic Research Plan in Shaanxi Province (2016JQ4022)

摘要: 中国鄂尔多斯盆地苏里格气田广覆性含气,但含气量差异较大。为了探讨影响气水相互作用背景下的流体运移特征,选取了陕234-235井区盒8段和山1段的13块样品,基于气水相渗实验进行研究和分析。结果表明:研究区目的层位储层渗流能力较差,几乎不含Ⅰ型气水相渗曲线,具有Ⅱ型气水相渗曲线的储层是勘探开发的首选层段;可动流体孔隙度、孔隙度、可动流体饱和度、渗透率、有效孔隙体积、有效喉道体积、石英体积分数和碳酸盐岩体积分数对可开采气体的储集空间大小,即可动气体孔隙度大小,具有积极的影响,同时,上述前7种因素对气体的渗流能力,即最大有效气相渗透率,也起着积极的作用;而黏土矿物体积分数对可开采气体的储集空间和渗流能力均起着消极的作用。

关键词: 致密砂岩气, 气水相渗, 影响因素, 苏里格, 鄂尔多斯盆地

Abstract: The Sulige gas-field in the Ordos basin covers a wide range of natural gas, but the gas content varies greatly. In order to investigate the migration characteristics under the influence of gas-water interaction, 13 samples from the 8th member of Permian Xiashihezi Formation and the 1st member of Permian Shanxi Formation in the Shaan Well 234-235 area were selected and studied based on the gas water relative flow analyses. The results show that the fluid permeability of reservoir in the target horizon is poor. The reservoirs with typeⅠgas-water phase permeability curve are hardly seen; while the reservoirs with typeⅡgas-water phase permeability curve are the preferred layers for exploration and development. The movable gas porosity equals to the storage space of recoverable gas, which has a positive correlation with movable fluid porosity, porosity, movable fluid saturation, permeability, effective pore volume, effective throat volume, quartz volume fraction, and carbonate volume fraction. The maximum effective gas-phase permeability equals to the gas flow capacity, which has a positive correlation with the first seven factors mentioned above; while the volume fraction of clay minerals plays a negative role both in the storage space of the recoverable gas and the gas flow capacity.

Key words: tight sandstone gas, gas water relative flow, influence factor, Sulige, Ordos basin

中图分类号: 

  • TE122
[1] 邹才能, 朱如凯, 吴松涛, 等. 常规与非常规油气聚集类型、特征、机理及展望:以中国致密油和致密气为例[J]. 石油学报, 2012, 33(2):173-187. Zou Caineng, Zhu Rukai, Wu Songtao, et al. Types, Characteristics, Genesis and Prospects of Conventional and Unconventional Hydrocarbon Accumulations:Taking Tight Oil and Tight Gas in China as an Instance[J]. Acta Petrolei Sinica, 2012, 33(2):173-187.
[2] 贾承造, 郑民, 张永峰. 中国非常规油气资源与勘探开发前景[J]. 石油勘探与开发, 2012, 39(2):129-136. Jia Chengzao, Zheng Min, Zhang Yongfeng. Unconventional Hydrocarbon Resources in China and the Prospect of Exploration and Development[J]. Petroleum Exploration and Development, 2012, 39(2):129-136.
[3] 唐相路, 姜振学, 张莺莺, 等. 渝东南地区页岩气富集区差异性分布成因[J]. 西安石油大学学报(自然科学版), 2015, 30(3):24-30. Tang Xianglu, Jiang Zhenxue, Zhang Yingying, et al. Causes Leading to Difference of Different Wellblocks in Southeastern Chongqing in Shale Gas Enrichment[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2015, 30(3):24-30.
[4] 姜振学, 唐相路, 李卓, 等. 川东南地区龙马溪组页岩孔隙结构全孔径表征及其对含气性的控制[J]. 地学前缘, 2016, 23(2):126-134. Jiang Zhenxue, Tang Xianglu, Li Zhuo, et al. The Whole-Aperture Pore Structure Characteristics and Its Effect on Gas Content of the Longmaxi Formation Shale in the Southeastern Sichuan Basin[J]. Earth Science Frontiers, 2016, 23(2):126-134.
[5] Huang H, Sun W, Ji W, et al. Effects of Pore-Throat Structure on Gas Permeability in the Tight Sandstone Reservoirs of the Upper Triassic Yanchang Formation in the Western Ordos Basin, China[J]. Journal of Petroleum Science & Engineering, 2018, 162:602-616.
[6] 王玉霞, 周立发, 焦尊生, 等. 鄂尔多斯盆地陕北地区延长组致密砂岩储层敏感性评价[J]. 吉林大学学报(地球科学版), 2018, 48(4):44-53. Wang Yuxia, Zhou Lifa, Jiao Zunsheng, et al. Sensitivity Evaluation of Tight Sandstone Reservoir in Yanchang Formation in Shanbei Area, Ordos Basin[J]. Journal of Jilin University (Earth Science Edition), 2018, 48(4):44-53.
[7] 王涛利, 王庆涛, 刘文平, 等. 页岩残留气定量方法及其地质意义[J]. 吉林大学学报(地球科学版), 2018, 48(6):1645-1653. Wang Taoli, Wang Qingtao, Liu Wenping, et al. Quantitative Method of Crushed Gas in Shale and Its Geological Significance[J]. Journal of Jilin University (Earth Science Edition), 2018, 48(6):1645-1653.
[8] Yang H, Fu J, Wei X, et al. Sulige Field in the Ordos Basin:Geological Setting, Field Discovery and Tight Gas Reservoirs[J]. Marine & Petroleum Geology, 2008, 25(4):387-400.
[9] 童晓光, 郭建宇, 王兆明. 非常规油气地质理论与技术进展[J]. 地学前缘, 2014, 21(1):9-20. Tong Xiaoguang, Guo Jianyu, Wang Zhaoming. The Progress of Geological Theory and Technology for Unconventional Oil and Gas[J]. Earth Science Frontiers, 2014, 21(1):9-20.
[10] 陈冬霞, 庞雄奇, 杨克明, 等. 川西坳陷深层叠复连续型致密砂岩气藏成因及形成过程[J].吉林大学学报(地球科学版), 2016, 46(6):1611-1623. Chen Dongxia, Pang Xiongqi, Yang Keming, et al. Genetic Mechanism and Formation of Superimposed Continuous Tight Sandstone Reservoir in Deep Xujiahe Formation in Western Sichuan Depression[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(6):1611-1623.
[11] Chen L, Jiang Z, Liu K, et al. Effect of Lithofacies on Gas Storage Capacity of Marine and Continental Shales in the Sichuan Basin, China[J]. Journal of Natural Gas Science & Engineering, 2016, 36:773-785.
[12] 杨华, 刘新社, 杨勇. 鄂尔多斯盆地致密气勘探开发形势与未来发展展望[J]. 中国工程科学, 2012, 16(6):40-48. Yang Hua, Liu Xinshe, Yang Yong. Status and Prospects of Tight Gas Exploration and Development in the Ordos Basin[J]. Engineering Sciences, 2012, 16(6):40-48.
[13] 窦伟坦, 杜玉斌, 于波, 等. 鄂尔多斯盆地姬塬地区非纵三维地震勘探采集技术[J]. 石油地球物理勘探, 2011, 46(6):844-850. Dou Weitan, Du Yubin, Yu Bo, et al. Off-Line 3D Seismic Acquisition in Jiyuan, Erdos Basin[J]. Oil Geophysical Prospecting, 2011, 46(6):844-850.
[14] Huang H, Chen L, Sun W, et al. Pore-Throat Structure and Fractal Characteristics of Shihezi Formation Tight Gas Sandstones in the Ordos Basin, China[J]. Fractals-Complex Geometry Patterns & Saling in Nature & Society, 2018(5):1840005.
[15] 郭平, 黄伟岗, 姜贻伟, 等. 致密气藏束缚与可动水研究[J]. 天然气工业, 2006, 26(10):99-101. Guo Ping, Huang Weigang, Jiang Yiwei, et al. Research on the Irreducible and Movable Water of Tight Sandstone Gas Reservoir[J]. Natural Gas Industry, 2006, 26(10):99-101.
[16] 杨正明, 姜汉桥, 李树铁, 等. 低渗气藏微观孔隙结构特征参数研究:以苏里格和迪那低渗气藏为例[J]. 石油天然气学报, 2007, 29(6):108-110. Yang Zhengming, Jiang Hanqiao, Li Shutie, et al. Characteristic Parameters of Microscopic Pore Structures of Low Permeability Gas Reservoirs:By Using Sulige and Dina Low Permeability Gas Reservoirs for Example[J]. Journal of Oil & Gas Technology, 2007, 29(6):108-110.
[17] 魏虎, 孙卫, 屈乐, 等. 靖边气田北部上古生界储层微观孔隙结构及其对生产动态影响[J]. 地质科技情报, 2011, 30(2):85-90. Wei Hu, Sun Wei, Qu Le, et al. Micro-Pore Structure Characteristics and Its Influence on Gas Well Production Performance in the Northern Part of Sandstone Reservoir in Jingbian Gasfield[J]. Geological Science & Technology Information, 2011, 30(2):85-90.
[18] 高航, 孙卫, 庞振宇, 等. 低渗透致密气藏可动流体饱和度研究:以苏里格苏48区块盒8段储层为例[J]. 地球物理学进展, 2014, 29(1):324-330. Gao Hang, Sun Wei, Pang Zhenyu, et al. Movable Fluid Saturation of Low-Permeability and Tight Sandstone Gas Reservoir:Taking He 8 Section of Block Su 48 in Sulige Gasfield as an Example[J]. Progress in Geophysics, 2014, 29(1):324-330.
[19] 赵谦平, 张丽霞, 尹锦涛, 等. 含粉砂质层页岩储层孔隙结构和物性特征:以张家滩陆相页岩为例[J]. 吉林大学学报(地球科学版), 2018, 48(4):1018-1029. Zhao Qianping, Zhang Lixia, Yin Jintao, et al. Pore Structure and Physical Characteristics of Shale Reservoir Interbedded with Silty Layers:An Example from Zhangjiatan Lacustrine Shale[J]. Journal of Jilin University (Earth Science Edition), 2018, 48(4):1018-1029.
[20] 周德胜, 师煜涵, 李鸣, 等. 基于核磁共振实验研究致密砂岩渗吸特征[J]. 西安石油大学学报(自然科学版), 2018, 33(2):51-57. Zhou Desheng, Shi Yuhan, Li Ming, et al. Study on Spontaneous Imbibition Feature of Tight Sandstone Based on NMR Experiment[J]. Journal of Xi'an Shiyou University, 2018, 33(2):51-57.
[21] 李文厚, 魏红红, 马振芳, 等. 苏里格庙气田碎屑岩储集层特征与天然气富集规律[J]. 石油与天然气地质, 2002, 23(4):387-391,396. Li Wenhou, Wei Honghong, Ma Zhenfang, et al. Characteristics of Detrital Reservoirs and Regularity of Gas Concentration in Suligemiao Gasfield[J]. Oil & Gas Geology, 2002, 23(4):387-391,396.
[22] 张新新, 赵靖舟, 马静辉, 等. 苏里格气区盒8段地层古今构造特征及其对气水分布的控制作用[J]. 西安石油大学学报(自然科学版), 2011, 26(3):14-20. Zhang Xinxin, Zhao Jingzhou, Ma Jinghui, et al. Ancient and Modern Tectonic Characteristics of 8th Member of Xiashihezi Formation in Sulige Gasfield, Ordos Basin, China and Their Control Effects on Gas-Water Distribution[J]. Journal of Xi'an Shiyou University, 2011, 26(3):14-20.
[23] Ji W, Song Y, Jiang Z, et al. Geological Controls and Estimation Algorithms of Lacustrine Shale Gas Adsorption Capacity:A Case Study of the Triassic Strata in the Southeastern Ordos Basin, China[J]. International Journal of Coal Geology, 2014, 134/135(Sup.1):61-73.
[24] Xiong F, Jiang Z, Li P, et al. Pore Structure of Transitional Shales in the Ordos Basin, NW China:Effects of Composition on Gas Storage Capacity[J]. Fuel, 2017, 206:504-515.
[25] 瞿雪姣, 李继强, 张吉, 等. 辫状河致密砂岩储层构型单元定量表征方法[J]. 吉林大学学报(地球科学版), 2018, 48(5):1342-1352. Qu Xuejiao, Li Jiqiang, Zhang Ji, et al. Quantitative Characterization of Reservoir Architecture Units of Braided River Tight Sandstone Reservoirs[J]. Journal of Jilin University (Earth Science Edition), 2018, 48(5):1342-1352.
[26] 魏红红, 彭惠群, 李静群, 等. 鄂尔多斯盆地中部石炭-二叠系沉积相带与砂体展布[J]. 沉积学报, 1999, 17(3):403-408. Wei Honghong, Peng Huiqun, Li Jingqun, et al. Distribution of Sedimentary Facies Belts and Sandstone Bodies of Permo Carboniferous in the Central Part of Ordos Basin[J]. Acta Sedimentologica Sinica, 1999, 17(3):403-408.
[27] 刘登科, 孙卫, 任大忠, 等. 致密砂岩气藏孔喉结构与可动流体赋存规律:以鄂尔多斯盆地苏里格气田西区盒8段、山1段储层为例[J]. 天然气地球科学, 2016, 27(12):2136-2146. Liu Dengke, Sun Wei, Ren Dazhong, et al. Features of Pore-Throat Structures and Movable Fluid in Tight Gas Reservoir:A Case from the 8~(th) Member of Permian Xiashihezi Formation and the 1st Member of Permian Shanxi Formation in the Western Area of Sulige Gasfield, Ordos Basin[J]. Natural Gas Geoscience, 2016, 27(12):2136-2146.
[28] 张茜. 陕234-陕235井区致密砂岩储层强非均质性定量表征[D]. 西安:西北大学, 2018. Zhang Xi. Quantitative Characterization of Strong Heterogeneity in Tight Sandstone Reservoirs in Shan 234-Shan 235 Well Block[D]. Xi'an:Northwest University, 2018.
[29] 樊爱萍, 赵娟, 杨仁超, 等. 苏里格气田东二区山_1段、盒_8段储层孔隙结构特征[J]. 天然气地球科学, 2011, 22(3):482-487. Fan Aiping, Zhao Juan, Yang Renchao, et al. Pore Structure of Reservoir Rocks in Shan1 and He 8 Members, the East Ⅱ Block of Sulige Gasfield[J]. Natural Gas Geoscience, 2011, 22(3):482-487.
[30] 盛军, 孙卫, 赵婷, 等. 致密砂岩气藏微观孔隙结构参数定量评价:以苏里格气田东南区为例[J]. 西北大学学报(自然科学版), 2015, 45(6):913-924. Sheng Jun, Sun Wei, Zhao Ting, et al. Quantitative Evaluation of Microscopic Pore Structure Parameters of Tight Sandstone Gas Reservoir:A Case the Southeast Area of Sulige Gasfield[J]. Journal of Northwest University(Natural Science Edition), 2015, 45(6):913-924.
[31] 盛军, 孙卫, 段宝虹, 等. 致密砂岩气藏水锁效应机理探析:以苏里格气田东南区上古生界盒8段储层为例[J]. 天然气地球科学, 2015, 26(10):1972-1978. Sheng Jun, Sun Wei, Duan Baohong, et al. Water Lock Effect Mechanism of Tight Sandstone Gas Reservoir:An Example of the He 8 Reservoir of the Upper Paleozoic in the Southeast Region of Sulige Gasfield[J]. Natural Gas Geoscience, 2015, 26(10):1972-1978.
[32] 董大鹏. 非稳态相渗实验数据的处理方法[J]. 西南石油大学学报(自然科学版), 2014, 36(6):110-116. Dong Dapeng. Processing Method to the Data of Relative Permeability in Unsteady State Displacement[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2014, 36(6):110-116.
[1] 李红进, 张道勇, 葛云锦, 王翊超, 徐刚. 甘泉—富县地区长7致密砂岩储层成岩相的定量识别及其对含油性的控制作用[J]. 吉林大学学报(地球科学版), 2019, 49(6): 1529-1539.
[2] 朱广祥, 郭秀军, 余乐, 孙翔, 贾永刚. 高黏粒含量海洋土电阻率特征分析及模型构建[J]. 吉林大学学报(地球科学版), 2019, 49(5): 1457-1465.
[3] 王朝, 王冠民, 杨清宇, 胡津, 何为, 石晓明, 张婕. 吴起—志丹地区延长组下组合浊沸石的纵向分布特征与成因[J]. 吉林大学学报(地球科学版), 2019, 49(5): 1247-1260.
[4] 孙泽飞, 史建儒, 连碧鹏, 康志帅, 申建, 杨函. 紫金山地区煤系致密砂岩储层特征及主控因素[J]. 吉林大学学报(地球科学版), 2019, 49(4): 959-969.
[5] 单祥, 郭华军, 郭旭光, 邹志文, 李亚哲, 王力宝. 低渗透储层孔隙结构影响因素及其定量评价——以准噶尔盆地金龙2地区二叠系上乌尔禾组二段为例[J]. 吉林大学学报(地球科学版), 2019, 49(3): 637-649.
[6] 杨冰, 许天福, 李凤昱, 田海龙, 杨磊磊. 水-岩作用对储层渗透性影响的数值模拟研究——以鄂尔多斯盆地东北部上古生界砂岩储层为例[J]. 吉林大学学报(地球科学版), 2019, 49(2): 526-538.
[7] 瞿雪姣, 李继强, 张吉, 赵忠军, 戚志林, 罗超. 辫状河致密砂岩储层构型单元定量表征方法[J]. 吉林大学学报(地球科学版), 2018, 48(5): 1342-1352.
[8] 王玉霞, 周立发, 焦尊生, 尚庆华, 黄生旺. 鄂尔多斯盆地陕北地区延长组致密砂岩储层敏感性评价[J]. 吉林大学学报(地球科学版), 2018, 48(4): 981-990.
[9] 赵谦平, 张丽霞, 尹锦涛, 俞雨溪, 姜呈馥, 王晖, 高潮. 含粉砂质层页岩储层孔隙结构和物性特征:以张家滩陆相页岩为例[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1018-1029.
[10] 孙超, 邵艳红, 王寒冬. 支挡式结构物水平冻胀力研究进展与思考[J]. 吉林大学学报(地球科学版), 2018, 48(3): 784-798.
[11] 冯小龙, 敖卫华, 唐玄. 陆相页岩气储层孔隙发育特征及其主控因素分析:以鄂尔多斯盆地长7段为例[J]. 吉林大学学报(地球科学版), 2018, 48(3): 678-692.
[12] 张玉玲, 司超群, 陈志宇, 初文磊, 陈在星, 王璜. 土壤硝酸盐氮的空间变异特征及影响因素分析[J]. 吉林大学学报(地球科学版), 2018, 48(1): 241-251.
[13] 郑国东, 覃建勋, 付伟, 杨志强, 赵辛金, 卢炳科. 广西北部湾地区表层土壤As分布特征及其影响因素[J]. 吉林大学学报(地球科学版), 2018, 48(1): 181-192.
[14] 田亚, 杜治利, 刘宝宪, 杜小弟, 陈夷. 鄂尔多斯盆地东南部宜川黄龙地区奥陶系风化壳储层发育特征[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1620-1630.
[15] 施有志, 林树枝, 车爱兰, 惠祥宇, 冯少孔, 黄钰琳. 基于三维地震映像法的地铁盾构区间孤石勘探及其应用[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1885-1893.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绪谦,商书波,林亚菊,周洪义,侯 戈. 石油类污染物在包气带土层中的水化学迁移率测定[J]. J4, 2005, 35(04): 501 -0504 .
[2] 范 裕,周涛发,袁 峰. 铊矿物晶体化学和地球化学[J]. J4, 2005, 35(03): 284 -0290 .
[3] 葛玉辉,孙春林,刘茂修. 鄂尔多斯盆地东北缘中侏罗统延安组植物群与古气候分析[J]. J4, 2006, 36(02): 164 -0168 .
[4] 张元厚,张世红,韩以贵,张慧军. 华熊地块马超营断裂走滑特征及演化[J]. J4, 2006, 36(02): 169 -0176 .
[5] 董春艳,马 瑞,迟效国,刘建峰,黎广荣. 差应力与岩石熔融性状关系的实验研究[J]. J4, 2006, 36(02): 177 -0182 .
[6] 刘兆顺,尚金城,许文良,靳 克. 吉林省东部资源型县域经济与生态环境协调发展分析--以汪清县为例[J]. J4, 2006, 36(02): 265 -0269 .
[7] 张新宇,肖克炎,刘光胜,揣媛媛. 阿舍勒铜矿可视化储量计算的指示克里格法应用研究[J]. J4, 2006, 36(02): 305 -0308 .
[8] 刘志宏,万传彪,任延广,李春柏,张 宏,柳行军. 海拉尔盆地乌尔逊-贝尔凹陷的地质特征及油气成藏规律[J]. J4, 2006, 36(04): 527 -534 .
[9] 赵安平,王 清,李 杨. 季节冻土区路基土粒度成分的分形特征[J]. J4, 2006, 36(04): 583 -587 .
[10] 陈力,梁海安,张文娟,荣帆. 模糊数学方法在城市工程地质环境区划中的应用--以抚顺市城区为例[J]. J4, 2008, 38(5): 837 -0840 .