吉林大学学报(地球科学版) ›› 2020, Vol. 50 ›› Issue (1): 234-242.doi: 10.13278/j.cnki.jjuese.20180302
• 地质工程与环境工程 • 上一篇
董双石1, 付绍珠1, 于洋2, 李超群1, 初义聪2
Dong Shuangshi1, Fu Shaozhu1, Yu Yang2, Li Chaoqun1, Chu Yicong2
摘要: 为进一步提高Ag-TiO2光催化效能,制备了还原氧化石墨烯(rGO)复合Ag-TiO2基的光电极。先通过对比不同的复合方式探究rGO对Ag-TiO2光催化剂表面电子传输和四环素降解效能的影响;再通过电化学阻抗谱测量、莫特-肖特基曲线等电化学手段对电极进行表征。结果表明:分层复合方式主要降低载体表面控制电极双层/薄膜的界面电阻,而全混复合方式主要降低总电荷转移电阻;分层电极的电子供体浓度随rGO质量分数增加而增大;在rGO质量分数为0.45%和0.25%时,分层复合和全混复合材料对四环素的降解速率分别比Ag-TiO2提高11.4%和2.3%;在外加0.5 V偏压下,分层复合电极LG6降解效率比未加外偏压时提高了5.3%,而全混复合电极MG2效率没有提升。分层复合方式能更有效地提高光催化剂表面电子传输效能。
中图分类号:
[1] Konstantinou I K, Albanis T A. TiO2-Assisted Photocatalytic Degradation of Azo Dyes in Aqueous Solution:Kinetic and Mechanistic Investigations[J]. Applied Catalysis B:Environmental, 2004, 49(1):1-14. [2] Xue J, Shen Q, Liang W, et al. Controlled Synthesis of Coaxial Core-Shell TiO2/Cu2O Heterostructures by Electrochemical Method and Their Photoelectrochemical Properties[J]. Materials Letters, 2013, 92:239-242. [3] Deng B, Fu S, Zhang Y, et al. Simultaneous Pollutant Degradation and Power Generation in Visible-Light Responsive Photocatalytic Fuel Cell with an Ag-TiO2 Loaded Photoanode[J]. Nano-Structures & Nano-Objects, 2018, 15:167-172. [4] Ma Y, Xiong H, Zhao Z, et al. Model-Based Evaluation of Tetracycline Hydrochloride Removal and Mineralization in an Intimately Coupled Photocatalysis and Biodegradation Reactor[J]. Chemical Engineering Journal, 2018, 351:967-975. [5] 陈宇溪,罗力莎,时峥,等. Ag掺杂型TiO2粉末光催化降解四环素类抗生素废水[J]. 科技创新与应用, 2018, 7(13):36-38. Chen Yuxi, Luo Lisha, Shi Zheng, et al. Photocatalytic Degradation of Tetracycline Antibiotic Wastewater by Ag-Doped TiO2 Powder[J]. Technology Innovation and Application, 2018, 7(13):36-38. [6] Bolotin K I, Sikes K J, Jiang Z, et al. Ultrahigh Electron Mobility in Suspended Graphene[J]. Solid State Communications, 2008, 146(9/10):351-355. [7] Park S, Ruoff R S. Chemical Methods for the Production of Graphenes[J]. Nature Nanotechnology, 2009, 4(4):217. [8] Gadgil B, Damlin P, Kvarnström C. Graphene vs Reduced Graphene Oxide:A Comparative Study of Graphene-Based Nanoplatforms on Electrochromic Switching Kinetics[J]. Carbon, 2016, 96:377-381. [9] Wang P, Tang Y, Dong Z, et al. Ag-AgBr/TiO2/RGO Nanocomposite for Visible-Light Photocatalytic Degradation of Penicillin G[J]. Journal of Materials Chemistry:A, 2013, 1(15):4718-4727. [10] Wei S, Wu R, Jian J, et al. Graphene Oxide/Core-Shell Structured TiO2@TiO2-x Nanocomposites with Highly Efficient Visible-Light Photocatalytic Performance[J]. RSC Advances, 2015, 5:40348-40351. [11] Lee J H, Kim I K, Cho D, et al. Photocatalytic Performance of Graphene/Ag/TiO2 Hybrid Nanocomposites[J]. Carbon Letters, 2015, 16(4):247-254. [12] Li G, Wang T, Zhu, Y, et al. Preparation and Photoelectrochemical Performance of Ag/Graphene/TiO2 Composite Film[J]. Applied Surface Science, 2011, 257(15):6568-6572. [13] Lee M S, Hong S-S, Mohseni M. Synthesis of Photocatalytic Nanosized TiO2-Ag Particles with Sol-Gel Method Using Reduction Agent[J]. Journal of Molecular Catalysis A:Chemical, 2005, 242(1/2):135-140. [14] Xie Y, Meng Y. SERS Performance of Graphene Oxide Decorated Silver Nanoparticle/Titania Nanotube Array[J]. RSC Advance, 2014, 4:41734-41743. [15] 朱遂一,霍明昕,杨霞,等.制备多孔镍负载TiO2薄膜光催化降解喹啉和化工废水[J].吉林大学学报(地球科学版),2012, 42(4):1151-1158. Zhu Suiyi, Huo Mingxin, Yang Xia, et al. Preparation of P-25 Films Immobilized on Porous Nickel and High Photocatalytic for the Degradation of Quinoline and Chemical Wastewater[J]. Journal of Jilin University (Earth Science Edition), 2012, 42(4):1151-1158. [16] Zhang Hao, Lü Xiaojun, Li Yueming, et al. P25 Graphene Composite as a High Performance Photocatalyst[J]. ACS Nano, 2010, 4(1):380-386. [17] 袁志军.分光光度法测定四环素片中四环素的含量探究[J]. 中国现代药物应用,2011, 5(5):101-102. Yuan Zhijun. Determination of Tetracycline in Tetracycline Tablets by Spectrophotometry[J]. Chinese Journal of Modern Drug Application, 2011, 5(5):101-102 [18] Hou Y, Gan Y, Yu Z, et al. Solar Promoted Azo Dye Degradation and Energy Production in the Bio-Photoelectrochemical System with a g-C3N4/BiOBr Heterojunction Photocathode[J]. Journal of Power Sources, 2017, 371:26-32. [19] Ding Jie, Bu Yunfei, Ou Man, et al. Facile Decoration of Carbon Fibers with Ag Nanoparticles for Adsorption and Photocatalytic Reduction of CO2[J]. Applied Catalysis B:Environmental, 2017, 202:314-325. [20] Yang J, Liao W, Liu Y, et al. Degradation of Rhodamine B Using a Visible-Light Driven Photocatalytic Fuel Cell[J]. Electrochimica Acta, 2014, 144:7-15. [21] Li K, He Y, Xu Y, et al. Degradation of Rhodamine B Using an Unconventional Graded Photoelectrode with Wedge Structure[J]. Environmental Science & Technology, 2011, 45(17):7401-7407. [22] Aïnouche L, Hamadou L, Kadri A, et al. Interfacial Barrier Layer Properties of Three Generations of TiO2 Nanotube Arrays[J]. Electrochimica Acta, 2014, 133:597-609. [23] Sun C, Wang Y, Su Q, et al. The Impacts of Graphene Concentration and Thickness on the Photocatalytic Performance of Bi12TiO20/Graphene Composite Thin Films[J]. Materials Research Express, 2017, 4(8):1-7. [24] 邹东雷,李婷婷,高梦薇,等. 基于响应面的可见光催化材料制备与优化[J].吉林大学学报(地球科学版),2015, 45(6):1833-1838. Zou Donglei, Li Tingting, Gao Mengwei, et al.Preparation and Optimization of the Photocatalytic Materials Under Visible Light with Response Surface Methodology[J]. Journal of Jilin University (Earth Science Edition), 2015, 45(6):1833-1838. [25] 许颖蘅,应迪文,江璇,等. 光催化燃料电池不同二氧化钛光阳极性能的对比[J]. 环境化学,2016, 15(1):82-88. Xu Yingheng, Ying Diwen, Jiang Xuan, et al. Comparison of Different TiO2 Photoanodes in Photocatalytic Fuel Cells[J]. Environmental Chemistry, 2016, 15(1):82-88. |
[1] | 邹东雷, 李婷婷, 高梦薇, 钱宁, 张高瑞洋, 董双石. 基于响应面的可见光催化材料制备与优化[J]. 吉林大学学报(地球科学版), 2015, 45(6): 1833-1838. |
[2] | 朱遂一, 霍明昕, 杨霞, 曲海利, 邵春彦, 边德军, 董龙, 孙宏伟. 制备多孔镍负载TiO2薄膜光催化降解喹啉和化工废水[J]. J4, 2012, 42(4): 1151-1158. |
[3] | 王玉洁, 许双英, 赵以辛, 蒋引珊. TiO2/电气石复合物的光催化性能[J]. J4, 2012, 42(2): 514-518. |
[4] | 朱遂一, 霍明昕, 杨霞, 董龙, 王健, 金生威, 刘秀. 泡沫镍基P-25薄膜光催化降解水中喹啉[J]. J4, 2011, 41(5): 1554-1561. |
[5] | 张东丽, 沙莉, 徐泽, 赵晓媛. 掺铜TiO2/膨润土光催化剂的制备及其光催化性能研究[J]. J4, 2009, 39(5): 913-917. |
[6] | 谭惠,李殿超,杨殿范, 王瑛玮. 掺铁-TiO2/膨润土复合光催化材料制备及性能[J]. J4, 2007, 37(1): 204-0208. |
[7] | 黎娜,徐自力,于连香,王晓,李文艳,刘星娟,杜尧国. 纳米TiO2/SiO2对甲苯-SO2体系气相光催化作用的影响因素[J]. J4, 2007, 37(1): 153-0157. |
[8] | 牟柏林,李芳菲,侯天意,孙申美,王瑛玮,祖胜男. 天然沸石对提高TiO2光催化活性的作用[J]. J4, 2006, 36(04): 668-672. |
|