吉林大学学报(地球科学版) ›› 2020, Vol. 50 ›› Issue (2): 442-453.doi: 10.13278/j.cnki.jjuese.20190268

• 沉积盆地分析 • 上一篇    下一篇

柴达木盆地西部地区渐新世下干柴沟组上段盐湖沉积特征

王建功1,2, 张道伟3, 石亚军1, 张平1, 孙秀建1, 王爱萍1, 王玉林1, 高妍芳1, 张世铭1, 易定红1   

  1. 1. 中国石油勘探开发研究院西北分院, 兰州 730020;
    2. 中国石油集团油藏描述重点实验室, 兰州 730020;
    3. 中国石油青海油田分公司, 甘肃 敦煌 736200
  • 收稿日期:2019-12-10 出版日期:2020-03-26 发布日期:2020-03-31
  • 作者简介:王建功(1969-),男,高级工程师,博士,主要从事沉积学、层序地层学和油气勘探的科研工作,E-mail:wangjg@petrochina.com.cn
  • 基金资助:
    中国石油天然气股份有限公司重大科技专项(2016E-01)

Salt Lake Depositional Characteristics of Upper Member of Lower Ganchaigou Formation, Western Qaidam Basin

Wang Jiangong1,2, Zhang Daowei3, Shi Yajun1, Zhang Ping1, Sun XiuJian1, Wang Aiping1, Wang Yulin1, Gao Yanfang1, Zhang Shiming1, Yi Dinghong1   

  1. 1. Research Institute of Petroleum Exploration and Development-Northwest, Petrochina, Lanzhou 730020, China;
    2. Key Laboratory of Reservoir Description, Petrochina, Lanzhou 730020, China;
    3. Petrochina Qinghai Oilfield Company, Dunhuang 736200, Gansu, China
  • Received:2019-12-10 Online:2020-03-26 Published:2020-03-31
  • Supported by:
    Supported by Major Science and Technology Project of CNPC (2016E-01)

摘要: 利用大量地质及地球化学资料,开展了柴达木盆地西部地区渐新世下干柴沟组上段盐湖沉积特征研究,重点识别岩石类型,恢复古沉积环境,建立沉积模式,探讨控制因素。研究认为:盐湖环境主要发育两大类、五小类沉积相组合,盐湖边缘沉积相包括滨岸斜坡带相组合、缓坡带相组合、陡坡带相组合,盆内沉积相包括水下隆起带相组合和盐湖深水区相组合;盐湖可划分早、中、晚3个沉积演化阶段,分别对应半咸水湖泊、咸水湖泊和盐湖;形成碳酸盐岩与钙质砂岩、富含石膏的碳酸盐岩与泥岩、厚层石盐与薄层碳酸盐岩等主要岩石组合;盐湖沉积主控因素为气候、古地貌与构造运动。

关键词: 湖相碳酸盐岩, 微生物岩, 混积岩, 盐湖, 柴达木盆地

Abstract: Based on abundant geological and geochemical data, the salt lake sedimentary characteristics of the Lower Ganchaigou Formation of Oligocene were studied to identify the major rock types and discuss the controlling factors of complex lithofacies, so as to restore the paleo-sedimentary environment and establish the sedimentary models. Salt lake can be divided into two types of sedimentary environments including basin margin and intra-basin, and five types of sedimentary facies zones are developed. The beach slope facies zone, steep slope facies zone and gentle slope facies zone are developed in the basin margin sedimentary environment, and the underwater high facies zone and the profound water facies zone are developed in the intra-basin sedimentary environment. There are three evolutionary stages from the bottom to the top of the upper section of the Lower Ganchaigou Formation:semi-salt lake, salt water lake, and salt lake, corresponding to three lithological associations of carbonate rocks and calcareous sandstone, anhydrite-rich carbonate rocks and mudstones, and thick-bedded salts and thin-bedded carbonates. The distribution of sedimentary lithofacies is controlled by the differences of chemical, biological and physical sedimentation, and the main controlling factors of sedimentation are climate, paleo-geomorphology,and tectonic movement.

Key words: lacustrine carbonate, microbialite, mixed rock, salt lake, Qaidam basin

中图分类号: 

  • P618.13
[1] Boh Sedimentary acs K M, Carroll A R, Neal J E, et al. Lake-Basin Type, Source Potential, and Hydrocarbon Character:An Integrated-Sequence-Stratigraphic-Geochemical Framework[C]//Gierlowski-Kordesch E H, Kelts K R. Lake Basin Through Space and Time. Tulsa:AAPG, 2000:3-34.
[2] Platt N H, Wright V P. Lacustrine Carbonates:Facies Models, Facies Distributions and Hydrocarbon Aspects[C]//Anadon P, Cabrera L, Kelts K. Lacustrine Facies Analysis. Oxford:Blackwell Publishing Ltd, 1991:57-74.
[3] Carozzi A V. Observation on Algal Biostromes in the Great Salt Lake, Utah[J]. Journal of Geology, 1962, 70:246-252.
[4] Halley R B. Ooid Fabric and Fracture in the Great Salt Lake and the Geologic Record[J]. Journal of Sedimentary Petrology, 1977, 47:1099-1120.
[5] Pedone V A, Fork R L. Formation of Aragonite Cement by Nannobacteria in the Great Salt Lake, Utah[J]. Geology, 1996, 24:763-765.
[6] Cohen A,Thouin C. Nearshore Carbonate Deposits in Lake Tanganyika[J]. Geology, 1987, 15:414-418.
[7] Casanova J,Hillaire-Marcel C. Late Holocene Hydrological History of Lake Tanganyika, East Africa, from Isotopic Data on Fossil Stromatolites[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1992, 91:35-48.
[8] Tiercelin J J, Soreghan M, Cohen A S, et al. Sedimentation in Large Rift Lakes:Example from the Middle Pleistocene-Modern Deposits of the Tanganyika Trough, East African Rift System[J]. Bulletin Des Centres De Researches Exploration-Production Elf-Aquitaine, 1992, 16(1):83-111.
[9] Cohen A S, Talbot M R,Awramik S M, et al. Lake Level and Paleoenvironmental History of Lake Tanganyika, as Inferred from Late Holocene and Moder Stromatolites[J]. Geological Society of America Bulletin, 1997, 109:444-460.
[10] Rouchy J M, Servant M, Fournier M, et al. Extensive Carbonate Algal Bioherms in Upper Pleistocene Saline Lakes of the Central Altiplano of Bolivia[J]. Sedimentology, 1996, 43:973-993.
[11] Camoin G, Casanova J, Rouchy J M, et al. Environmental Controls on Perennial and Ephemeral Carbonate Lakes:The Central Palaeo-Andean Basin of Bolivia During Late Cretaceous to Early Tertiary Times[J]. Sedimentary Geology, 1997, 113:1-26.
[12] Palma R M. Lacustrine Facies in the Upper Cretaceous Balbuena Subgroup (Salta Group):Andina Basin, Argentina[C]//Gierlowski-Kordesch E H, Kelts K R. Lake Basins Through Space and Time. Geology:AAPG, 2000:323-328.
[13] Link M H, Osborne R H,Awramik S M, et al. Lacustrine Stromatolites and Associated Sediments of the Pliocene Ridge Route Formation, Ridge Basin, California[J]. Journal of Sedimentary Petrology, 1978, 48:143-158.
[14] Benson L V. Carbonate Deposition, Pyramid LakeSubbasin, Nevada:1:Sequence of Formation and Elevational Distribution of Carbonate Deposits (Tufas)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1994, 109:55-87.
[15] 陈薇,郝毅,倪超,等. 川中下侏罗统大安寨组储层特征及控制因素[J]. 西南石油大学学报(自然科学版),2013,35(5):7-14. Chen Wei, Hao Yi, Ni Chao, et al.Reservoir Characteristics and Controlling Factors of Da'an Zhai Member in Lower Jurassic, Central Sichuan[J]. Journal of West Petroleum University (Science & Technology Edition), 2013, 35(5):7-14.
[16] 刘传联. 东营凹陷沙河街组湖相碳酸盐岩碳氧同位素组分及其古湖泊学意义[J]. 沉积学报,1998,16(3):109-114. Liu Chuanlian. Carbon and Oxygen Isotopic Compositions of Lacustrine Carbonates of the Shahejie Formation in the Dongying Depression and Their Paleolimnological Significance[J]. Acta Sedimentologica Sinica, 1998, 16(3):109-114.
[17] 张永生,王国力,杨玉卿,等. 江汉盆地潜江凹陷古近系盐湖沉积盐韵律及其古气候意义[J]. 古地理学报,2005,7(4):461-470. Zhang Yongsheng, Wang Guoli, Yang Yuqing, et al.Rhythms of Saline Lake Sediments of the Paleogene and Their Paleoclimatic Significance in Qianjiang Sag, Jianghan Basin[J]. Journal of Palaeogeography, 2005, 7(4):461-470.
[18] 王建功,张道伟,易定红,等. 柴西地区下干柴沟组上段湖相碳酸盐岩沉积特征及相模式[J]. 岩性油气藏,2018,30(4):12-13. Wang Jiangong, Zhang Daowei, Yi Dinghong, et al. Depositional Characteristics and Facies Model of Lacustrine Carbonate Rock in the Upper Member of Lower Ganchaigou Formation in Western Qaidam Basin[J]. Lithologic Reservoirs, 2018, 30(4):12-13.
[19] 王建功,张道伟,袁剑英,等. 英西湖相碳酸盐岩储层成因与含油性分析[J]. 中国矿业大学学报,2019,48(1):110-120. Wang Jiangong, Zhang Daowei, Yuan Jianying, et al. Characteristics of Reservoir Genesis and Oil & Gas Accumulation in Lacustrine Carbonate in Yingxi Area of Qaidam Basin[J]. Journal of China University of Mining & Technology, 2019, 48(1):110-120.
[20] 黄成刚,常海燕,崔俊,等. 柴达木盆地西部地区渐新世沉积特征与油气成藏模式[J]. 石油学报,2017,38(11):1230-1243. Huang Chenggang,Chang Haiyan,Cui Jun,et al. OligoceneSedimentaryCharacteristicsandHydrocarbonAccumulationModel intheWesternQaidamBasin[J]. ActaPetroleiSinica,2017,38(11):1230-1243.
[21] 徐伟,陈开远,曹正林,等. 咸化湖盆混积岩成因机理研究[J]. 岩石学报,2014,30(6):1804-1816. Xu Wei, Chen Kaiyuan, Cao Zhenglin, et al.Original Mechanism of Mixed Sediments in the Saline Lcustrine Basin[J]. Acta Petrologica Sinica[J], 2014, 30(6):1804-1816.
[22] 袁剑英,黄成刚,曹正林,等. 咸化湖盆白云岩碳氧同位素特征及古环境意义:以柴西地区始新统下干柴沟组为例[J]. 地球化学,2015,44(3):254-266. Yuan Jianying, Huang Chenggang, Cao Zhenglin, et al. Carbon and Oxygen Isotopic Composition of Saline Lacustrine Dolomite and Its Palaeoenvironmental Significance:A Case Study of Lower Eocene Ganchaigou Formation in Western Qaidam Basin[J]. Geochimica, 2015, 44(3):254-266.
[23] 袁剑英,黄成刚,夏青松,等. 咸化湖盆碳酸盐岩储层特征及孔隙形成机理:以柴西地区始新统下干柴沟组为例[J]. 地质论评,2016,62(1):111-126. Yuan Jianying, Huang Chenggang, Xia Qingsong, et al. The Characteristics of Carbonate Reservoir, and Formation Mechanism of Pores in the Saline Lacustrine Basin:A Case Study of the Lower Eocene Ganchaigou Formation in Western Qaidam Basin[J]. Geological Review, 2016, 62(1):111-126.
[24] Riding R. Microbial Carbonates:The Geological Record of Calcified Bacterial-Algal Mats and Biofilms[J]. Sedimentology, 2000, 47(Sup. 1):179-214.
[25] Carroll A R,Bohacs K M. Stratigraphic Classification of Ancient Takes:Balancing Tectonic and Climatic Controls[J]. Geology, 1999, 27:99-102.
[26] 寿建峰,邵文斌,陈子炓,等. 柴西地区第三系藻灰(云)岩的岩石类型与分布特征[J]. 石油勘探与开发,2003,30(4):37-39. Shou Jianfeng, Shao Wenbin, Chen Ziliao, et al.Lithological Types and Distribution Features of Tertiary Algal-Limestone in Chaixi Area, Qaidam Basin[J]. Petroleum Exploration and Development, 2003, 30(4):37-39.
[27] Talbot M R, Allen P A. Lakes[C]//Reading H G. Sedimentary Environments:Processes, Facies and Stratigraphy. Oxford:Blackwell Publishing, 1996:83-124.
[28] Gierlowski-Kordesch E H. Chapter 1 Lacustrine Carbonates[C]//Alonso-Zarza A M, Tanner L H. Carbonates in Continental Settings:Facies, Environments, and Processes.[S. l.]:Elsevier, 2010:1-101.
[1] 曾文人, 孟庆涛, 刘招君, 徐银波, 孙平昌, 王克兵. 柴北缘团鱼山地区中侏罗统石门沟组油页岩有机地球化学特征及古湖泊条件[J]. 吉林大学学报(地球科学版), 2019, 49(5): 1270-1284.
[2] 田敏, 董春梅, 林承焰, 柴小颖, 王丽娟. 柴达木盆地涩北二号生物气田砂体产能分类评价[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1060-1069.
[3] 周刚, 郑荣才, 赵罡, 文华国, 温龙斌. 川西北甘溪地区吉维特阶核形石特征、成因及地质意义[J]. 吉林大学学报(地球科学版), 2017, 47(2): 405-417.
[4] 巨银娟, 张小莉, 张永庶, 陈琰. 柴达木盆地昆北地区基岩储层裂缝特征[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1660-1671.
[5] 裴军令, 周在征, 李海兵, 孙知明. 中中新世以来阿尔金断裂走滑未造成柴达木盆地整体旋转[J]. 吉林大学学报(地球科学版), 2016, 46(1): 163-174.
[6] 朱超, 夏志远, 王传武, 宋光永, 魏学斌, 王鹏, 王海峰, 王波. 致密油储层甜点地震预测[J]. 吉林大学学报(地球科学版), 2015, 45(2): 602-610.
[7] 路俊刚,姚宜同,王力,陈世加,汪立群,管俊亚,张焕旭,唐海评. 柴达木盆地跃进斜坡区油源判识与原油勘探方向[J]. 吉林大学学报(地球科学版), 2014, 44(3): 730-740.
[8] 高军平, 方小敏, 宋春晖, 李生喜, 薛建平. 青藏高原北部中-新生代构造-热事件:来自柴西碎屑磷灰石裂变径迹的制约[J]. J4, 2011, 41(5): 1466-1475.
[9] 尹成明, 任收麦, 田丽艳. 阿尔金断裂对柴达木盆地西南地区的影响--来自构造节理分析的证据[J]. J4, 2011, 41(3): 724-734.
[10] 李雄炎, 李洪奇, 阴平, 陈亦寒, 周金煜. 柴达木盆地三湖地区第四系低饱和度气层的成因机理[J]. J4, 2010, 40(6): 1241-1247.
[11] 刘志宏, 王芃, 赵呈祥, 沙茜, 周飞. 柴达木盆地北缘白垩纪挤压构造的发现及其地质意义[J]. J4, 2010, 40(5): 979-985.
[12] 刘志宏, 王芃, 刘永江, 赵呈祥, 高军义, 万传彪. 柴达木盆地南翼山-尖顶山地区构造特征及变形时间的确定[J]. J4, 2009, 39(5): 796-802.
[13] 沈艳杰, 程日辉, 王嘹亮, 李飞, 许中杰. 粤东地区上白垩统盐湖沉积及其在南海北部中生界油气勘探中的意义[J]. J4, 2009, 39(5): 759-766.
[14] 尹成明,李伟民,R. Andrea,刘永江,陈元忠,巩庆林. 柴达木盆地新生代以来的气候变化研究:来自碳氧同位素的证据[J]. J4, 2007, 37(5): 901-0907.
[15] 张继承,姜琦刚,李远华,王利花. 近50年来柴达木盆地湿地变迁及其气候背景分析[J]. J4, 2007, 37(4): 752-0758.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!