吉林大学学报(地球科学版) ›› 2020, Vol. 50 ›› Issue (4): 1042-1058.doi: 10.13278/j.cnki.jjuese.20190205

• 地质与资源 • 上一篇    

大兴安岭下嘎来奥伊铅锌矿床钾长花岗岩的岩石成因及地质意义

余长胜1, 杨言辰1, 韩世炯1, 杨昆林2, 宋朝阳1, 张易航1, 王旺1   

  1. 1. 吉林大学地球科学学院, 长春 130061;
    2. 黑龙江省地球物理勘察院, 哈尔滨 150036
  • 收稿日期:2019-09-22 发布日期:2020-07-29
  • 通讯作者: 杨言辰(1965-),男,教授,主要从事矿床学、矿产普查与勘探方面的研究,E-mail:yyc@jlu.edu.cn E-mail:yyc@jlu.edu.cn
  • 作者简介:余长胜(1993-),男,硕士研究生,主要从事矿产普查与勘探方面的研究,E-mail:746110516@qq.com
  • 基金资助:
    中国地质调查局项目(121201103000150060)

Petrogenesis of Moyite from Xiagalaiaoyi Pb-Zn Deposit in Great Xing’an Range and Its Geological Significance

Yu Changsheng1, Yang Yanchen1, Han Shijiong1, Yang Kunlin2, Song Zhaoyang1, Zhang Yihang1, Wang Wang1   

  1. 1. College of Earth Sciences, Jilin University, Changchun 130061, China;
    2. Geophysical Exploration Institute of Heilongjiang Province, Harbin 150036, China
  • Received:2019-09-22 Published:2020-07-29
  • Supported by:
    Supported by Project of China Geological Survey (121201103000150060)

摘要: 下嘎来奥伊铅锌矿床位于黑龙江省西北部,大地构造位于额尔古纳地块额木尔山隆起带南缘与大兴安岭火山岩带北缘接合部位的西段。研究区广泛分布大面积不同期次侵入岩,矿体产于中酸性浅成侵入岩及其与大理岩接触带——矽卡岩带中。LA-ICP-MS锆石U-Pb定年结果表明,下嘎来奥伊钾长花岗岩成岩年龄为(168.9±2.1)、(165.9±2.1) Ma,认为其成矿时代为中侏罗世。元素地球化学测试结果显示,下嘎来奥伊钾长花岗岩属于准铝质-弱过铝质碱性系列;岩石具有高Si、K、碱和贫Al质量分数的特征;A/CNK值为0.97~1.02;锆石饱和温度介于760~851℃之间,平均温度为811℃,具A型花岗岩特征;稀土元素特征表现为轻稀土富集、重稀土相对亏损,富集大离子亲石元素(Rb、K)和高场强元素(Th、U、Zr、Hf),亏损高场强元素(P、Ti、Nb、Ta),具Eu负异常(δEu值为0.01~0.27)。下嘎来奥伊钾长花岗岩w(Sr)=(13.20~62.80)×10-6,平均值为38.95×10-6w(Yb)=(2.44~7.81)×10-6,平均值为4.50×10-6,属于低Sr高Yb质量分数型花岗岩。结合区域大地构造背景及相关研究认为,矿区钾长花岗岩的形成与中侏罗世蒙古—鄂霍茨克洋闭合所形成的伸展环境密切相关。

关键词: A型花岗岩, 钾长花岗岩, 年代学, 中侏罗世, 地球化学, 伸展环境, 下嘎来奥伊铅锌矿床

Abstract: Xiagalaiaoyi Pb-Zn deposit is located in the west section of the intersection line between the south edge of the Erguna block Ermul Mountain uplift and the north margin of the Great Xing’an Range volcanic belt, northwest of Heilongjiang Province. Non-contemporaneous intrusive rocks are widely distributed in Xiagalaiaoyi district, and the ore bodies occur in the intermediate-acrid hypabyssal intrusive rocks and their contact zone with marble. LA-ICP-MS zircon U-Pb dating results show that the diagenetic age of moyite is (168.9±2.1) Ma-(165.9±2.1) Ma, suggesting that the metallogenic age of Xiagalaiaoyi Pb-Zn deposit is Middle Jurassic. Based on the geochemical data, the moyite belongs to quasi-aluminous to weakly per-aluminous alkaline A-type granite,which is characterized by high Si, K and alkali, poor Al, A/CNK value of 0.97-1.02, and the saturation temperature of zircons ranges from 760 to 851℃ (average 811℃). The granite exhibits weakly negative Eu anomalies (δEu=0.01-0.27), enrichment of LREE, large ion lithophile elements (such as Rb and K), high-field strength elements (such as Th, U, Zr and Hf), and depletion of HREE and high-field strength elements (such as P, Ti, Nb and Ta). The rocks belong to low-Sr and high-Yb type granites with Sr (13.20-62.80)×10-6(average 38.95×10-6)and Yb(2.44-7.81)×10-6(average 4.50×10-6). Combined with the relevant regional tectonic evolution research, we conclude that the moyite formation is closely related to the extensional environment after the closure of the Mongolia Okhotsk Ocean during Middle Jurassic.

Key words: A-type granite, moyite, geochronology, Middle Jurassic, geochemistry, extensional environment, Xiagalaiaoyi Pb-Zn deposit

中图分类号: 

  • P588.12
[1] Meng E, Xu W L, Pei F P, et al. Permian Bimodal Volcanism in the Zhangguangcai Range of Eastern Heilongjiang Province, NE China:Zircon U-Pb-Hf Isotopes and Geochemical Evidence[J]. Asian Earth Science, 2011, 41:119-132.
[2] Zhang F Q, Chen H L, Yu X, et al. Early Cretaceous Volcanism in the Northern Songliao Basin, NE China, and Its Geodynamic Implication[J]. Gondwana Res, 2011, 19:163-176.
[3] Liu J, Mao J W, Wu G, et al. Zircon U-Pb and Molybdenite Re-Os Dating of the Chalukou Porphyry Mo Deposit in the Northern Great Xing'an Range, China and Its Geological Significance[J]. Asian Earth Science, 2014, 79:696-709.
[4] Ouyang H G, Mao J W, Santosh M, et al. Geodynamic Setting of Mesozoic Magmatism in NE China and Surrounding Regions:Perspectives from Spatio-Temporal Distribution Patterns of Ore Deposits[J]. Asian Earth Science, 2013, 78:222-236.
[5] Bai L A, Sun J G, Gu A L, et al. A Review of the Genesis, Geochronology, and Geological Significance of Hydrothermal Copper and Associated Metals Deposits in the Great Xing'an Range, NE China[J]. Ore Geology Reviews, 2014, 61:192-203.
[6] Zhou Z, Mao J, Liu J, et al. Early Cretaceous Magmatism and Ore Mineralization in Northeast China:Examples from Taolaituo Mo and Aobaotu Pb-Zn Deposits[J]. Int Geol Rev, 2015, 57:229-256.
[7] Zhang J H, Gao S, Ge W C, et al. Geochronology of the Mesozoic Volcanic Rocks in the Great Xing'an Range, Northeastern China:Implications for Subduction-Induced Delamination[J]. Chemcial Geology, 2010, 276:144-165.
[8] 杨昆林.黑龙江省下嘎来奥伊河上游铅锌多金属矿床地质特征与成因研究[D].长春:吉林大学,2017. Yang Kunlin. Geological Characteristics and Genesis of Pb-Zn Deposit in Upper Reaches of Xiagalaiaoyi River in Heilongjiang Province[D]. Changchun:Jilin University, 2017.
[9] Badarch G, Dickson C W, Windley B F. A New Terrane Subdivision for Mongolia:Implications for the Phanerozoic Crustal Growth of Central Asia[J]. Asian Earth Science, 2002, 21:87-110.
[10] Ge W C, Chen J S, Yang H, et al. Tectonic Implications of New Zircon U-Pb Ages for the Xinghuadukou Complex, Erguna Massif, Northern Great Xing'an Range, NE China[J]. Asian Earth Science, 2015, 106:169-185.
[11] Tang J, Xu W L, Wang F, et al. Geochronology and Geochemistry of Neoproterozoic Magmatism in the Erguna Massif, NE China:Petrogenesis and Implications for the Breakup of the Rodinia Supercontinent[J]. Precambrian Reserch, 2013, 224:597-611.
[12] 孟恩,许文良,杨德彬,等.满洲里地区灵泉盆地中生代火山岩的锆石U-Pb年代学、地球化学及其地质意义[J].岩石学报,2011,27(4):1209-1226. Meng En, Xu Wenliang, Yang Debin, et al. Zircon U-Pb Chronology, Geochemistry of Mesozoic Volcanic Rocks from the Lingquan Basin in Manzhouli Area, and Its Tectonic Implications[J]. Acta Petrologica Sinica, 2011, 27(4):1209-1226.
[13] 许文良,王枫,裴福萍,等.中国东北中生代构造体制与区域成矿背景:来自中生代火山岩组合时空变化的制约[J].岩石学报,2013,29(2):339-353. Xu Wenliang, Wang Feng, Pei Fuping, et al. Mesozoic Tectonic Regimes and Regional Ore-forming Background in NE China:Constraints from Spatial and Temporal Variations of Mesozoic Volcanic Rock Associations[J]. Acta Petrologica Sinica, 2013, 29(2):339-353.
[14] 肖龙.汇聚板块边缘的金矿成矿作用[J].地质科技情报,2000,19(1):46-50. Xiao Long. Gold Mineralisation at Plate Convergent Margins[J]. Geological Science and Technology Information, 2000, 19(1):46-50.
[15] 唐杰.额尔古纳地块中生代火成岩的年代学与地球化学:对蒙古-鄂霍茨克缝合带构造演化的制约[D].长春:吉林大学,2016. Tang Jie. Geochronology and Geochemistry of the Mesozoic Igneous Rocks in the Erguna Massif, NE China:Constraints on the Tectonic Evolution of the Mongol-Okhotsk Suture Zone[D]. Changchun:Jilin University, 2016.
[16] 吴元保,郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报,2004,55(16):1589-1604. Wu Yuanbao, Zheng Yongfei.Mineralogical Study of Zircon Genesis and Its Restriction on the Interpretation of U-Pb Age[J]. Chinese Science Bulletin, 2004,55(16):1589-1604.
[17] Middlemost A K. Naming Materials in the Magma/Igneous Rock System[J]. Earth Science Reviews, 1994, 37(3/4):218-219.
[18] Collins W, Beams S, White A, et al. Nature and Origin of A-Type Granites with Particular Reference to Southeastern Australia[J]. Contributions to Mineralogy and Petrology, 1982, 80(2):189-200.
[19] Wright J B. A Simple Alkalinity Ratio and Its Application to Questions of Non-Orogenic Granite Genesis[J]. Geological Magazine, 1969, 106(4):370-384.
[20] Maniar P D, Piccoli P M. Tectonic Discrimination of Granitoids[J]. Geological Society of America Bulletin, 1989, 101(5):635-643.
[21] Sun S S, Mcdonough W F. Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes[J]. Geological Society, London, Special Publications, 1989, 42:313-345.
[22] Loiselle M C, Wones D R. Characteristic and Origin of Anorogenic Granites[J]. Geological of Society of America, 1979, 11(7):468.
[23] Eby G N. The A-Type Granitoids:A Review of Their Occurrence and Chemical Characteristics and Speculations on Their Petrogenesis[J]. Lithos, 1990, 26(1/2):115-134.
[24] Eby G N. Chemical Subdivision of the A-Type Granitoids:Petrogenetic and Tectonic Implications[J]. Geology, 1992, 20:641-644.
[25] 王德滋,周新民.中国东南部晚中生代花岗质火山-侵入杂岩成因与地壳演化[M].北京:科学出版社,2005. Wang Dezi, Zhou Xinmin. Genesis and Crustal Evolution of Late Mesozoic Granitic Volcano-Intrusive Diamictite in Southeastern China[M]. Beijing:Science Press, 2005.
[26] King P L, White A J R, Chappell B W, et al. Characterization and Origin of Alununous A-Type Grautes from the Lachlan Fold Belt, Southeastern Aushalia[J]. Journal of Petrologry, 1997, 38(3):371-391.
[27] 付建明,马昌前,谢才富,等.湖南金鸡岭铝质A型花岗岩的厘定及构造环境分析[J].地球化学,2005,34(3):215-226. Fu Jianming, Ma Changqian, Xie Caifu, et al. Ascertainment of the Jinjiling Aluminous A-Type Granite, Hunan Province and Its Tectonic Settings[J]. Geochimica, 2005. 34(3):215-226.
[28] 张旗,苒嗥,李承东.A型花岗岩的实质是什么?[J].岩石矿物学杂志,2012,31(4):621-626. Zhang Qi, Ran Hao, Li Chengdong. A-Type Granite:What is the Essence?[J]. Acta Petrologica et Mineralogica, 2012, 31(4):621-626.
[29] 苏玉平,唐红峰.A型花岗岩的微量元素地球化学[J].矿物岩石地球化学通报,2005,24(3):245-251. Su Yuping, Tang Hongfeng. Trace Element Geochemistry of A-Type Granites[J]. Bulletin of Mineralogy, Petrotogy and Geochemistry, 2005, 24(3):245-251.
[30] Whalen J B, Currie K L, Chappell B W. A-Type Granites:Geochemical Characteristics, Discriminatuon and Petrogenesis[J]. Contributions to Mineralogy and Petrology, 1987, 95:407-419.
[31] Andrew K, Brian J F. Nd Isotope Evidence for Crustmentle Interaction in the Generation of A-Type Granitoid Suites in Labrador, Canada[J]. Chemical Geology, 1993, 104:39-60.
[32] Goodenough K M, Upton B G J, Ellam R M. Geochemical Evolution of the Lvigtut Granite, South Greenland:A Fluorinr-Rich "A-Type" Istrusion[J]. Lithos, 2000, 51:205-221.
[33] 许保良,阎国翰,张丞.A型花岗岩的岩石学亚类及其物质来源[J].地学前缘,1998,5(3):113-124. Xu Baoliang, Yan Guohan, Zhang Cheng. Petrological Subdiviision and Source Material of A-Type Granites[J]. Earth Science Frontiers, 1998, 5(3):113-124.
[34] 杨德彬,许文良,裴福萍,等.蚌埠隆起区古元古代钾长花岗岩的成因:岩石地球化学、锆石U-Pb年代学与Hf同位素的制约[J].地球科学:中国地质大学学报,2009,34(1):148-164. Yang Debin, Xu Wenliang, Pei Fuping, et al. Petrogenesis of the Paleoproterozoic K-Feldspar Granites in Bengbu Uplift:Constraints from Petro-Geochemistry, Zircon U-Pb Dating and Hf Isotope[J]. Earth Science:Journal of China University of Geosciences, 2009, 34(1):148-164.
[35] 赵玉锁,杨立强,陈永福,等.黑龙江金厂铜金矿床闪长玢岩地球化学及锆石U-Pb年代学[J].岩石学报,2012,28(2):451-467. Zhao Yusuo, Yang Liqiang, Chen Yongfu, et al. Geochemistry and Zircon U-Pb Geochronology of the Diorite Porphyry Associated with the Jinchang Cu-Au Deposit Heilongjiang Province[J]. Acta Petrologica Sinica, 2012, 28(2):451-467.
[36] 刘建明,张锐,张庆洲.大兴安岭地区的区域成矿特征[J].地学前缘,2004,11(1):269-277. Liu Jianming, Zhang Rui, Zhang Qingzhou. The Regional Metallogeny of Da Hinggan Ling, China[J]. Earth Science Frontiers, 2004, 11(1):269-277.
[37] 邵积东,王守光,赵文涛,等.大兴安岭地区成矿地质特征及找矿前景分析[J].地质与资源,2007,16(4):252-256,262. Shao Jidong, Wang Shouguang, Zhao Wentao, et al. Geologicaal Characteristics and Prospecting Potential in Daxing'anling Region[J]. Geology and Resources, 2007, 16(4):252-256,262.
[38] 毛景文,谢桂青,张作衡,等.中国北方中生代大规模成矿作用的期次及其地球动力学背景[J].岩石学报,2005,21(1):169-188. Mao Jingwen, Xie Guiqing, Zhang Zuoheng, et al. Mesozoic Large-scale Metallogenic Pulses in North China and Corresponding Geodynamic Settings[J]. Acta Petrologica Sinica, 2005, 21(1):169-188.
[39] 赵元艺,王江朋,赵广江,等.黑龙江多宝山矿集区成矿规律与找矿方向[J].吉林大学学报(地球科学版),2011,41(6):1676-1688. Zhao Yuanyi, Wang Jiangpeng, Zhao Guangjiang, et al. Metallogenic Regularity and Prospecting Direction of Duobaoshan Ore Field, Heilongjiang Province, China[J]. Journal of Jilin University(Earth Science Edition), 2011, 41(6):1676-1688.
[40] 白令安,孙景贵,张勇,等.大兴安岭地区内生铜矿床的成因类型、成矿时代与成矿动力学背景[J].岩石学报,2012,28(2):468-482. Bai Ling'an, Sun Jinggui, Zhang Yong, et al. Genetic Type, Mineralization Epoch and Geodynamical Setting of Endogenous Copper Deposits in the Great Xing'an Range[J]. Acta Petrologica Sinica, 2012, 28(2):468-482.
[41] 褚少雄,刘建明,徐九华,等.黑龙江三矿沟铁铜矿床花岗闪长岩锆石U-Pb定年、岩石成因及构造意义[J].岩石学报,2012,28(2):433-450. Chu Shaoxiong, Liu Jianming, Xu Jiuhua, et al. Zircon U-Pb Dating, Petrogenesis and Tectonic Significance of the Granodiorite in the Sankuanggou Skarn Fe-Cu Deposit,Heilongjiang Province[J]. Acta Petrologica Sinica, 2012, 28(2):433-450.
[42] 代军治,毛景文,杨富全,等.华北地台北缘燕辽钼(铜)成矿带矿床地质特征及动力学背景[J].矿床地质,2006,25(5):598-612. Dai Junzhi, Mao Jingwen, Yang Fuquan, et al. Geological Characteristics and Geodynamic Background of Molybdenum(Copper) Deposits Along Yanshan Liaoning Metallogenic Belt on Northern Margin of North China Block[J]. Mineral Deposits, 2006, 25(5):598-612.
[43] 代军治,毛景文,赵财胜,等.辽宁肖家营子矽卡岩型钼(铁)矿床高盐度流体特征及演化[J].岩石学报,2008,24(9):2124-2132. Dai Junzhi, Mao Jingwen, Zhao Caisheng, et al. High Salinity Fluid Characteristic and Evolution of Xiaojiayingzi Mo(Fe) Deposit, Liaoning Province[J]. Acta Petrologica Sinica, 2008, 24(9):2124-2132.
[44] 葛文春,吴福元,周长勇,等.兴蒙造山带东段斑岩型Cu, Mo矿床成矿时代及其地球动力学意义[J].科学通报,2007,58(20):2407-2417. Ge Wenchun, Wu Fuyuan, Zhou Changyong, et al. The Metallogenic Ages and Geodynamic Significance of the Porphyry Cu and Mo Deposits in the Eastern xingmeng Orogenic Belt[J]. Chinese Science Bulletin, 2007, 58(20):2407-2417.
[45] 李进文,梁玉伟,王向阳,等.内蒙古二道河子铅锌矿成因研究[J].吉林大学学报(地球科学版),2011,41(6):1745-1754,1783. Li Jinwen, Liang Yuwei, Wang Xiangyang, et al. The Origin of the Erdaohezi Lead-Zinc Deposit, Inner Mongolia[J]. Journal of Jilin University(Earth Science Edition), 2011, 41(6):1745-1745,1783.
[46] 秦克章,李惠民,李伟实,等.内蒙古乌奴格吐山斑岩铜钼矿床的成岩、成矿时代[J].地质论评,1999,64(2):180-185. Qin Kezhang, Li Huimin, Li Weishi, et al. Intrusion and Mineralization Ages of the Wunugetushan Porphyry Cu-Mo Deposit, Inner Mongolia, Northwestern China[J]. Geological Review, 1999, 64(2):180-185.
[47] Shu Q, Chang Z S, Lai Y, et al. Regional Metallogeny of Mo-Bearing Deposits in Northeastern China, with New Re-Os Dates of Porphyry Mo Deposits in the Northern Xilamulun District[J]. Economic Geology, 2016, 111:1783-1798.
[48] Zhang J H, Ge W C, Wu F Y, et al. Large-Scale Early Cretaceous Volcanic Events in the Northern Greater Xing'an Mountains, Northeastern China[J]. Lithos, 2008, 102:138-157.
[49] Ge W C, Wu F Y, Zhou C Y, et al. Porphyry Cu-Mo Deposits in the Eastern Xing'an-Mongolian Orogenic Belt:Mineralization Ages and Their Geodynamic Implications[J]. Chinese Science Bulletin, 2007, 52:3416-3427.
[50] Chen Y J, Zhang C, Wang P, et al. The Mo Deposits of the Northeast China:A Powerful Indicator of Tectonic Setting and Associated Evolutionary Trends[J]. Ore Geology Reviews, 2017, 81:602-640.
[51] Richards M A. Prospecting for Jurassic Slabs[J]. Nature, 1999, 397:203-204.
[52] Meng Q R. What Drove Late Mesozoic Extension of the Northern China Mongolia Tract?[J]. Tectonophysics, 2003, 369:155-174.
[53] Pitcher W S. The Nature and Origin of Granite[M]. London:Blackie Academic & Professional, Glasgow, 1993.
[54] 祁进平,陈衍景, Pirajno F.东北地区浅成低温热液矿床的地质特征和构造背景[J].矿物岩石,2005,25(2):47-59. Qi Jinping, Chen Yanjing, Pirajno F. Geological Characteristics and Tectonic Setting of the Epitherrmal Deposits in the Northeast China[J]. Mineral Petrol, 2005, 25(2):47-59.
[55] Wang W, Tang J, Xu W L, et al. Geochronology and Geochemistry of Early Jurassic Volcanic Rocks in the Erguna Massif, Northeast China:Petrogenesis and Implications for the Tectonic Evolution of the Mongol-Okhotsk Suture Belt[J]. Lithos, 2015, 218/219:73-86.
[56] Wu F Y, Sun D Y, Ge W C, et al. Geochronology of the Phanerozoic Granitoids in Northeastern China[J]. Journal of Asian Earth Science, 2011, 41:1-30.
[57] Li J Y. Permian Geodynamic Setting of Northeast China and Adjacent Regions:Closure of the Paleo-Asian Ocean and Subduction of the Paleo-Pacific Plate[J]. Journal of Asian Earth Sciences, 2006, 26:207-224.
[58] 徐美君,许文良,王枫,等.小兴安岭中部早侏罗世花岗质岩石的年代学与地球化学及其构造意义[J].岩石学报,2013,29(2):354-368. Xu Meijun, Xu Wenliang, Wang Feng, et al. Geochronology and Geochemistry of the Early Jurassic Granitoids in the Central Lesser Xing'an Range, NE China and Its Tectonic Implications[J]. Acta Petrologica Sinica, 2013, 29(2):354-368.
[59] Wang T, Guo L, Zhang L, et al. Timing and Evolution of Jurassic-Cretaceous Granitoid Magmatisms in the Mongol-Okhotsk Belt and Adjacent Areas, NE Asia:Implications for Transition from Contractional Crustal Thickening to Extensional Thinning and Geodynamic Settings[J]. Asian Earth Science, 2015, 97(Part B):365-392.
[60] 张旗,王元龙,金惟俊,等.造山前、造山和造山后花岗岩的识别[J].地质通报,2008,27(1):1-18. Zhang Qi, Wang Yuanlong, Jin Weijun,et al. Criteria for the Recognition of Pre-, Syn- and Post-Orogenic Granitic Rocks[J]. Geological Bulletin of China, 2008, 27(1):1-18.
[61] Petro W L, Vogel T A, Wilband J T. Major-Element Chemistry of Plutonic Rock Suites from Compressional and Extentional Plate Boundaries[J]. Chemical Geology, 1979, 26:217-235.
[62] Pearce J A, Harris N B W, Tindle A G. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks[J]. Journal of Petrology, 1984, 25:956-983.
[63] Li Y, Xu W L, Wang F, et al. Geochronology and Geochemistry of Late Paleozoic-Early Mesozoic Igneous Rocks of the Erguna Massif, NE China:Implications for the Early Evolution of the Mongol-Okhotsk Tectonic Regime[J]. Journal of Asian Earth Sciences, 2017, 144:205-224.
[64] Tang J, Xu W L, Wang F, et al. Early Mesozoic Southward Subduction History of the Mongol-Okhotsk Oceanic Plate:Evidence from Geochronology and Geochemistry of Early Mesozoic Intrusive Rocks in the Erguna Massif, NE China[J]. Gondwana Research, 2016, 31:218-240.
[65] Wang W, Tang J, Xu W L, et al. Geochronology and Geochemistry of Early Jurassic Volcanic Rocks in the Erguna Massif, Northeast China:Petrogenesis and Implications for the Tectonic Evolution of the Mongol-Okhotsk Suture Belt[J]. Lithos, 2015, 218/219:73-86.
[66] Kravchinsky V A, Cogne J P, Harbert W P, et al. Evolution of the Mongol-Okhotsk Ocean as Constrained by New Palaeomagnetic Data from the Mongol-Okhotsk Suture Zone, Siberia[J]. Geophysical Journal of the Royal Astronomical Society, 2002, 148:34-57.
[67] Tomurtogoo O, Windley B F, Kroner A, et al. Zircon Age and Occurrence of the Adaatsag Ophiolite and Muron Shear Zone, Central Mongolia:Constraints on the Evolution of the Mongol-Okhotsk Ocean, Suture and Orogen[J]. Journal of the Geological Society, London,2005, 162:125-134.
[68] 吕志成,段国正,郝立波,等.北方造山带东北段中生代构造-流体-成岩成矿体系及其演化[J].大地构造与成矿学,2001,25(2):161-170. Lü Zhicheng, Duan Guozheng, Hao Libo, et al. The Interaction System Between Mesozoic Tectonics, Fluids, Petrogenesis and Mineralization in the Northeast of the Northern Orogenic Belt, China[J]. Geotectonica et Metallogenia, 2001, 25(2):161-170.
[1] 王成志, 董永胜, 王鹏森, 陈木森, 白雪瑞. 辽东弓长岭—岫岩地区古元古界辽河群变沉积岩的物源及构造背景[J]. 吉林大学学报(地球科学版), 2020, 50(4): 941-956.
[2] 蔡永丰, 刘风雷, 冯佐海, 周云, 曾长育. 桂东北姑婆山岩体矿物学和年代学特征及其成岩成矿意义[J]. 吉林大学学报(地球科学版), 2020, 50(3): 842-856.
[3] 任云生, 刘小禾, 商青青, 陈聪, 杨群, 郝宇杰, 孙振明. 吉林省和龙地区鸡南BIF型铁矿床含矿建造地球化学特征及形成时代[J]. 吉林大学学报(地球科学版), 2020, 50(3): 800-814.
[4] 王德远, 续海金, 王攀, 贾敏, 高占冬. 大陆造山带深熔垮塌的岩石学、地球化学证据:以北大别深熔混合岩为例[J]. 吉林大学学报(地球科学版), 2020, 50(3): 675-693.
[5] 张健, 张海华, 陈树旺, 郑月娟, 张德军, 苏飞, 黄欣. 松辽盆地北部上二叠统林西组地球化学特征及地质意义[J]. 吉林大学学报(地球科学版), 2020, 50(2): 518-530.
[6] 陈会军, 于宏斌, 马永非, 陈井胜, 钱程, 刘世伟, 崔天日, 钟辉. 吉东南地区五女峰岩体锆石U-Pb年代学、岩石地球化学特征及其构造意义[J]. 吉林大学学报(地球科学版), 2020, 50(2): 531-541.
[7] 宋宇, 刘招君, Achim Bechtel, 徐银波, 孟庆涛, 孙平昌, 朱凯. 老黑山盆地下白垩统穆棱组油页岩与煤含油率控制因素[J]. 吉林大学学报(地球科学版), 2020, 50(2): 378-391.
[8] 郑国栋, 孟庆涛, 刘招君. 松辽盆地北部青一段油页岩地球化学特征及其记录的古湖泊学信息[J]. 吉林大学学报(地球科学版), 2020, 50(2): 392-404.
[9] 和钟铧, 王启智, 王强. 大兴安岭索伦地区哲斯组碎屑岩地球化学特征和锆石U-Pb年龄对沉积物源属性约束[J]. 吉林大学学报(地球科学版), 2020, 50(2): 405-424.
[10] 孟庆涛, 李金国, 刘招君, 胡菲, 徐川. 茂名盆地羊角含矿区始新统油柑窝组油页岩有机地球化学特征及沉积环境[J]. 吉林大学学报(地球科学版), 2020, 50(2): 356-367.
[11] 徐进军, 李宁, 金强, 刘吉华, 楼达, 滕建成. 黄骅坳陷石炭-二叠系凝析油气地球化学特征及来源分析[J]. 吉林大学学报(地球科学版), 2020, 50(2): 644-652.
[12] 张书义. 内蒙古新巴尔虎右旗塔木兰沟组火山岩年代学与地球化学特征[J]. 吉林大学学报(地球科学版), 2020, 50(1): 129-138.
[13] 许中杰, 孔锦涛, 程日辉, 李双林, 孔媛, 于振峰. 下扬子南京地区早寒武世幕府山组海平面相对升降的地球化学和碳、氧同位素记录[J]. 吉林大学学报(地球科学版), 2020, 50(1): 158-169.
[14] 程龙, 丁清峰, 邓元良, 宋凯, 张强. 东昆仑五龙沟矿集区中三叠世辉绿岩脉的岩石成因:年代学、地球化学特征及其构造意义[J]. 吉林大学学报(地球科学版), 2019, 49(6): 1628-1648.
[15] 雷如雄, 赵同阳, 李平, 董连慧, 李基宏, 吴昌志. 北阿尔金地区大平沟金矿H-O-S-Pb同位素地球化学特征对金矿成因的启示[J]. 吉林大学学报(地球科学版), 2019, 49(6): 1578-1590.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!