吉林大学学报(地球科学版) ›› 2020, Vol. 50 ›› Issue (3): 675-693.doi: 10.13278/j.cnki.jjuese.20180227
• 地质与资源 •
王德远1, 续海金2, 王攀2, 贾敏1, 高占冬1
Wang Deyuan1, Xu Haijin2, Wang Pan2, Jia Min1, Gao Zhandong1
摘要: 北大别位于大别造山带的核部,分布着大量的造山带垮塌时期形成的混合岩,其于理解大别造山带的形成和演化有着重要的意义。北大别混合岩的原岩为TTG(D)岩石,因黑云母和角闪石的脱水熔融诱发深熔作用产生。顺层产出的为富斜长石浅色体,主要矿物组成为斜长石+石英+黑云母±钾长石±角闪石。伟晶岩脉或团块为富钾长石浅色体,主要矿物组成为钾长石+石英±斜长石±黑云母±角闪石。暗色体为变晶结构,主要矿物组成为角闪石+黑云母+斜长石+石英±单斜辉石;其中,暗色矿物角闪石和黑云母常常定向排列,具有明显的溶蚀结构;暗色体中浅色矿物颗粒较小,以斜长石和石英为主,指示部分熔融的残余产物。全岩地球化学特征表明,碱金属元素(Na、K等)、大离子亲石元素(Ba、K、La等)和LREE等优先进入酸性熔体,而相容元素和中-重稀土元素等残留在残余体中。浅色体与本区花岗岩相比,二者都有右倾的稀土配分模式,富集LREE,亏损HREE。但浅色体具有明显的Eu正异常,δEu值为2.48~6.55,而花岗岩则有弱的Eu负异常,并且浅色体中大颗粒斜长石相互构成框架结构,含量明显高于正常花岗岩熔体,表明浅色体更可能是熔体早期结晶的产物。
中图分类号:
[1] Ma C Q, Yang K G, Ming H L, et al. The Timing of Tectonic Transition from Compression to Extension in Dabieshan:Evidence from Mesozoic Granites[J]. Science China:Series D, 2004,47:453-462. [2] 邓晋福. 中国大陆根-柱构造:大陆动力学的钥匙[M]. 北京:地质出版社, 1996. Deng Jinfu. China Mainland Root-Column Structure:Key to Continental Dynamics[M]. Beijing:Geological Publishing House, 1996. [3] Vanderhaeghe O, Teyssier C. Crustal-Scale Rheological Transitions During Late-Orogenic Collapse[J]. Tectonophysics, 2001, 335(1):211-228. [4] Wu Yuanbao, Zheng Yongfei, Zhang Shaobing, et al. Zircon U-Pb Ages and Hf Isotope Compositions of Migmatite from the North Dabie Terrane in China:Constraints on Partial Melting[J]. Journal of Metamorphic Geology, 2007, 25(9):991-1009. [5] Brown M. Crustal Melting and Melt Extraction, Ascent and Emplacement in Orogens:Mechanisms and Consequences[J]. Journal of the Geological Society, 2007, 164(4):709-730. [6] Sawyer E W. Melt Segregation in the Continental Crust:Distribution and Movement of Melt in Anatectic Rocks[J]. Journal of Metamorphic Geology, 2001, 19(3):291-309. [7] Xu H, Ma C, Zhang J, et al. Early Cretaceous Low-Mg Adakitic Granites from the Dabie Orogen, Eastern China:Petrogenesis and Implications for Destruction of the Over-Thickened Lower Continental Crust[J]. Gondwana Research, 2013, 23(1):190-207. [8] He Y, Li S, Hoefs J, et al. Post-Collisional Granitoids from the Dabie Orogen:New Evidence for Partial Melting of a Thickened Continental Crust[J]. Geochimica et Cosmochimica Acta, 2011, 75(13):3815-3838. [9] Xu H, Ma C, Ye K. Early Cretaceous Granitoids and Their Implications for the Collapse of the Dabie Orogen, Eastern China:SHRIMP Zircon U-Pb Dating and Geochemistry[J]. Chemical Geology, 2007, 240(3):238-259. [10] 吴元保,唐俊,张少兵,等. 北大别两期混合岩化作用:SHRIMP锆石U-Pb年龄证据[J]. 科学通报, 2007, 52(8):939-944. Wu Yuanbao, Tang Jun, Zhang Shaobing, et al. Two Stages of Mixed Diagenesis in the North Dabie Belt:Evidence of the U-Pb Age of SHRIMP Zircon[J].China Science Bulletin, 2007, 52(8):939-944. [11] 王水炯. 俯冲陆壳的折返历史及深熔作用和俯冲过程Mg同位素地球化学行为[D]. 北京:中国地质大学(北京), 2013. Wang Shuijiong. Reentry History of Subducted Continental Crust, Anatexis and the Geochemical Behavior of Mg Isotopes During Subduction[D]. Beijing:China University of Geosciences (Beijing), 2013. [12] Wang J H, Sun M, Deng S X. Geochronological Constraints on the Timing of Migmatization in the Dabie Shan, East-Central China[J]. European Journal of Mineralogy, 2002, 14(3):513-524. [13] 邓尚贤,王江海,孙敏,等. 湖北省罗田凤凰关混合岩浅色体的类型及其锆石U-Pb年龄[J]. 地球化学, 1997,26(2):75-86. Deng Shangxian, Wang Jianghai, Sun Min, et al. Migmatite Leucosomes Type and Age of Zircon U-Pb in Fenghuangguan of Luotian Hubei Province[J]. Geochemistry, 1997,26(2):75-86. [14] Xu H J, Zhang J F. Anatexis Witnessed Post-Collisional Evolution of the Dabie Orogen, China[J]. Journal of Asian Earth Sciences, 2017, 145:278-296. [15] Xu H, Zhang J. Zircon Geochronological Evidence for Participation of the North China Craton in the Protolith of Migmatite of the North Dabie Terrane[J]. Journal of Earth Science, 2018(1):1-13. [16] 吴元保,陈道公,郑永飞,等. 北大别漫水河混合岩化片麻岩中锆石微区微量元素特征及其地质意义[J]. 岩石学报, 2004, 20(5):1041-1050. Wu Yuanbao, Chen Daogong, Zheng Yongfei, et al. Microelement Characteristics and Geological Significance of Zircon Micro-Area in Mixed Lithologic Gneiss in Manshuihe of North Dabie[J]. Acta Petrologica Sinica, 2004, 20(5):1041-1050. [17] 李曙光,何永胜,王水炯. 大别造山带的去山根过程与机制:碰撞后岩浆岩的年代学和地球化学制约[J]. 科学通报, 2013,58(23):2316-2322. Li Shuguang, He Yongsheng, Wang Shuijiong. Process and Mechanism of Mountain-Root Removal of the Dabie Orogen:Constraints from Geochronology and Geochemistry of Post-Collisional Igneous Rocks[J]. China Science Bulletin, 2013,58(23):2316-2322. [18] Zhang C, Holtz F, Koepke J, et al. Decompressional Anatexis in the Migmatite Core Complex of Northern Dabie Orogen, Eastern China:Petrological Evidence and Ti-in-Quartz the Rmobarometry[J]. Lithos, 2014, 202/203(4):227-236. [19] 曾令森,李海兵,许志琴,等. 混合岩中浅色体的有限迁移及其对变形分解的影响[J]. 地质学报, 2004,78(6):752-757. Zeng Lingsen, Li Haibing, Xu Zhiqin, et al. Limited of Leucosome in a Migmatite and Effects of Progressive Partial Melting on Strain Partitioning[J]. Acta Geologica Sinica, 2004,78(6):752-757. [20] Solar G S, Brown M. Petrogenesis of Migmatites in Maine, USA:Possible Source of Peraluminous Leucogranite in Plutons?[J]. Journal of Petrology, 2001, 42(4):789-823. [21] Milord I, Sawyer E W, Brown M. Formation of Diatexite Migmatite and Granite Magma During Anatexis of Semi-Pelitic Metasedimentary Rocks:An Example from St. Malo, France[J]. Journal of Petrology, 2001, 42(3):487-505. [22] Otamendi J E, Patiño Douce A E. Partial Melting of Aluminous Metagreywackes in the Northern Sierra de Comechingones, Central Argentina[J]. Journal of Petrology, 2001, 42(9):1751-1772. [23] Xu H, Ma C, Zhang J. Generation of Early Cretaceous High-Mg Adakitic Host and Enclaves by Magma Mixing, Dabie Orogen, Eastern China[J]. Lithos, 2012, 142/143:182-200. [24] 崔建军, 王艳红, 郑光高, 等. 大悟杂岩的形成和抬升时代及其地质意义[J]. 吉林大学学报(地球科学版), 2017, 47(1):139-153. Cui Jianjun, Wang Yanhong, Zheng Guanggao, et al. The Timing of the Formation and Exhumation of the Dawu Complex in West Dabie Orogen, East China, and Its Geological Significance[J].Journal of Jilin University(Earth Science Edition), 2017,47(1):139-153. [25] Wang Q, Wyman D A, Xu J, et al. Early Cretaceous Adakitic Granites in the Northern Dabie Complex, Central China:Implications for Partial Melting and Delamination of Thickened Lower Crust[J]. Geochimica et Cosmochimica Acta, 2007, 71(10):2609-2636. [26] Xu H, Ma C, Ye K. Early Cretaceous Granitoids and Their Implications for the Collapse of the Dabie Orogen, Eastern China:SHRIMP Zircon U-Pb Dating and Geochemistry[J]. Chemical Geology, 2007, 240(3):238-259. [27] Fan W M, Guo F, Wang Y J, et al. Late Mesozoic Volcanism in the Northern Huaiyang Tectono-Magmatic Belt, Central China:Partial Melts from a Lithospheric Mantle with Subducted Continental Crust Relicts Beneath the Dabie Orogen?[J]. Chemical Geology, 2004, 209(1):27-48. [28] Qi L, Jing H, Gregoire D C. Determination of Trace Elements in Granites by Inductively Coupled Plasma Mass Spectrometry[J]. Talanta, 2000, 51(3):507-513. [29] Sun S S, Mcdonough W F. Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes[J]. Geological Society London Special Publications, 1989, 42(1):313-345. [30] Middlemost E A K. Naming Materials in the Magma/Igneous Rock System[J]. Annual Review of Earth & Planetary Sciences, 1994, 37(3/4):215-224. [31] Irvine T N, Baragar W R A. A Guide to the Chemical Classification of the Common Volcanic Rocks[J]. Canadian Journal of Earth Sciences, 1971, 8(5):523-548. [32] Rickwood P C. Boundary Lines Within Petrologic Diagrams Which Use Oxides of Major and Minor Elements[J]. Lithos, 1989, 22(4):247-263. [33] 王强,王人镜,邱家骧,等. 大别山核部九资河花岗岩体成因[J]. 地球化学, 2000,29(2):120-131. Wang Qiang, Wang Renjing, Qiu Jiaxiang, et al. Petrogenesis of Jiuzihe Granites in the Core of Dabie Mountains[J]. Geochimica, 2000,29(2):120-131. [34] 王强,邱家骧,王人镜. 大别山花岗质岩浆的形成:胶水或含自由水体系的熔融:以天堂寨和九资河花岗岩为例[J]. 地质学报, 2000,74(1):63-71. Wang Qiang, Qiu Jiaxiang, Wang Renjing. The Formation of Yanshanian Granitic Magma in Dabie Mountains:Dehydration or Aquifer Melting:With Tiantangzhai and Jiuzihe Granite as Examples[J]. Acta Geologica Sinica, 2000,74(1):63-71. [35] Wang Y, Fan W, Peng T, et al. Nature of the Mesozoic Lithospheric Mantle and Tectonic Decoupling Beneath the Dabie Orogen, Central China:Evidence from 40Ar/39Ar Geochronology, Elemental and Sr-Nd-Pb Isotopic Compositions of Early Cretaceous Mafic Igneous Rocks[J]. Chemical Geology, 2005, 220(3):165-189. |
[1] | 张健, 张海华, 陈树旺, 郑月娟, 张德军, 苏飞, 黄欣. 松辽盆地北部上二叠统林西组地球化学特征及地质意义[J]. 吉林大学学报(地球科学版), 2020, 50(2): 518-530. |
[2] | 陈会军, 于宏斌, 马永非, 陈井胜, 钱程, 刘世伟, 崔天日, 钟辉. 吉东南地区五女峰岩体锆石U-Pb年代学、岩石地球化学特征及其构造意义[J]. 吉林大学学报(地球科学版), 2020, 50(2): 531-541. |
[3] | 孟庆涛, 李金国, 刘招君, 胡菲, 徐川. 茂名盆地羊角含矿区始新统油柑窝组油页岩有机地球化学特征及沉积环境[J]. 吉林大学学报(地球科学版), 2020, 50(2): 356-367. |
[4] | 宋宇, 刘招君, Achim Bechtel, 徐银波, 孟庆涛, 孙平昌, 朱凯. 老黑山盆地下白垩统穆棱组油页岩与煤含油率控制因素[J]. 吉林大学学报(地球科学版), 2020, 50(2): 378-391. |
[5] | 郑国栋, 孟庆涛, 刘招君. 松辽盆地北部青一段油页岩地球化学特征及其记录的古湖泊学信息[J]. 吉林大学学报(地球科学版), 2020, 50(2): 392-404. |
[6] | 和钟铧, 王启智, 王强. 大兴安岭索伦地区哲斯组碎屑岩地球化学特征和锆石U-Pb年龄对沉积物源属性约束[J]. 吉林大学学报(地球科学版), 2020, 50(2): 405-424. |
[7] | 徐进军, 李宁, 金强, 刘吉华, 楼达, 滕建成. 黄骅坳陷石炭-二叠系凝析油气地球化学特征及来源分析[J]. 吉林大学学报(地球科学版), 2020, 50(2): 644-652. |
[8] | 张书义. 内蒙古新巴尔虎右旗塔木兰沟组火山岩年代学与地球化学特征[J]. 吉林大学学报(地球科学版), 2020, 50(1): 129-138. |
[9] | 许中杰, 孔锦涛, 程日辉, 李双林, 孔媛, 于振峰. 下扬子南京地区早寒武世幕府山组海平面相对升降的地球化学和碳、氧同位素记录[J]. 吉林大学学报(地球科学版), 2020, 50(1): 158-169. |
[10] | 雷如雄, 赵同阳, 李平, 董连慧, 李基宏, 吴昌志. 北阿尔金地区大平沟金矿H-O-S-Pb同位素地球化学特征对金矿成因的启示[J]. 吉林大学学报(地球科学版), 2019, 49(6): 1578-1590. |
[11] | 程龙, 丁清峰, 邓元良, 宋凯, 张强. 东昆仑五龙沟矿集区中三叠世辉绿岩脉的岩石成因:年代学、地球化学特征及其构造意义[J]. 吉林大学学报(地球科学版), 2019, 49(6): 1628-1648. |
[12] | 曾文人, 孟庆涛, 刘招君, 徐银波, 孙平昌, 王克兵. 柴北缘团鱼山地区中侏罗统石门沟组油页岩有机地球化学特征及古湖泊条件[J]. 吉林大学学报(地球科学版), 2019, 49(5): 1270-1284. |
[13] | 陈庆松, 杨润柏, 刘德民, 陶兰初. 滇东北会泽灯影组硅质岩成因及沉积环境——来自岩石学和地球化学证据[J]. 吉林大学学报(地球科学版), 2019, 49(5): 1327-1337. |
[14] | 牛海青, 韩小锋, 肖波, 魏建设, 张慧元, 王宝文. 中口子盆地侏罗系煤系烃源岩地球化学特征及生烃潜力评价[J]. 吉林大学学报(地球科学版), 2019, 49(4): 970-981. |
[15] | 周翔. 松辽盆地北部营城组火山岩地球化学特征及地质意义[J]. 吉林大学学报(地球科学版), 2019, 49(4): 1001-1014. |
|