吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (2): 584-596.doi: 10.13278/j.cnki.jjuese.20200016

• 地球探测与信息技术 • 上一篇    

中亚造山带东段浅表构造速度结构——深地震反射剖面初至波层析成像的揭露

谢樊1, 王海燕2, 侯贺晟3, 高锐1,2,3,4   

  1. 1. 中山大学地球科学与工程学院, 广州 510275;
    2. 中国地质科学院地质研究所, 北京 100037;
    3. 中国地质科学院, 北京 100037;
    4. 吉林大学地球探测科学与技术学院, 长春 130026
  • 收稿日期:2020-01-01 发布日期:2021-04-06
  • 通讯作者: 高锐(1950-),男,教授,博士生导师,主要从事大陆岩石圈的地球动力学研究,E-mail:ruigao126@126.com E-mail:ruigao126@126.com
  • 作者简介:谢樊(1997-),女,博士,主要从事地震层析成像方面的研究,E-mail:xief27@mail2.sysu.edu.cn
  • 基金资助:
    国家自然科学基金项目(41430213,41590863);国家重点研发计划项目(2107YFC0601301,2107YFC0601300);中国地质调查局项目(DD20160207,DD20190010)

Near-Surface Fine Velocity Structure in Eastern Segment of Central Asian Orogenic Belt: Revealed by First-Arrival Wave Tomography from Deep Seismic Reflection Profile

Xie Fan1, Wang Haiyan2, Hou Hesheng3, Gao Rui1,2,3,4   

  1. 1. School of Earth Science and Geological Engineering, Sun Yat-Sen University, Guangzhou 510275, China;
    2. Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China;
    3. Chinese Academy of Geological Sciences, Beijing 100037, China;
    4. College of GeoExploration Science and Technology, Jilin University, Changchun 130026, China
  • Received:2020-01-01 Published:2021-04-06
  • Supported by:
    Supported by the National Natural Science Foundation of China (41430213,41590863),the National Key R&D Program of China (2107YFC0601301, 2107YFC0601300) and the Project of China Geological Survey (DD20160207,DD20190010)

摘要: 为揭示中亚造山带浅表结构,对地壳演化与深部过程提供浅部精准约束,利用横过中亚造山带东段(奈曼旗—东乌珠穆沁旗)长达400 km的深地震反射剖面共2 186炮的初至波走时数据,运用初至波层析成像方法获得了自地表向下约3 km厚度的浅表速度结构精细模型。通过模型计算了沉积厚度变化与基岩起伏特征,并在贺根山和西拉木伦缝合带附近获得了呈低速特征的弧前沉积盆地规模与沉积厚度变化特征;在此基础上,综合速度模型与深地震反射剖面的强振幅反射信息,建立了符合剖面南北两侧的古亚洲洋双向俯冲并与中部的残存微陆块发生拼合的构造模型。结果表明:研究区的沉积厚度在0.3~3.0 km范围内变化,区内存在多期岩浆活动及活动构造,林西地区隐伏连续分布的高速结构多为造山花岗岩所导致;古亚洲洋消亡过程在经数亿年演变后仍能在大陆边缘的浅表构造中有迹可循。

关键词: 中亚造山带, 浅表速度结构, 深地震反射剖面, 初至波走时层析成像

Abstract: To reveal the superficial structure of the Central Asian orogenic belt, provide precise constraints on the evolution and deep processes of the crust, a fine model of near-surface velocity structure with a thickness about 3 000 m was obtained through the first-arrive wave tomography based on a total of 2 186 shots across a 400 km long deep seismic reflection profile in the eastern section of the Central Asian orogenic belt (Naiman Banner-East Wuzhumuqin Banner). This model calculated the variation of sedimentary thickness and the bedrock undulation, and the scale and thickness of the forearc basin with low-velocity characteristics were obtained near the Hegen Mountain suture zone and Xar Moron suture zone. Based on the near-surface velocity structure and the strong amplitude reflection information of the deep seismic reflection profile, a structure model was inferred that coincides with the bidirectional subduction of the paleo-Asian Ocean on the north and south sides of the profile and merges with the residual microcontinent block in the middle. The results showed the deposition thickness varies from 0.3 to 3.0 km, there were multi-periodic magmatic and tectonic activities in the study area, and the buried and continuous high velocity structures in Linxi area are mostly caused by orogenic granites. Through our work, the subduction process of the paleo-Asian Ocean can still be traced in the near-surface velocity structure of the continental margin after hundreds of millions of years of evolution.

Key words: Central Asian orogenic belt, near-surface velocity structure, deep seismic reflection profile, first arrival travel-time tomography

中图分类号: 

  • P631.4
[1] 徐备,赵盼,鲍庆中,等. 兴蒙造山带前中生代构造单元划分初探[J]. 岩石学报, 2014, 30(7):1841-1857. Xu Bei, Zhao Pan, Bao Qingzhong, et al. Peliminary Study on the Pre-Mesozoic Tectonic Unit Division of the Xing-Meng Orogenic Belt(XMOB)[J]. Acta Petrologica Sinica, 2014, 30(7):1841-1857.
[2] 徐备,陈斌. 内蒙古北部华北板块与西伯利亚板块之间中古生代造山带的结构及演化[J]. 中国科学:D辑:地球科学, 1997, 27(3):227-232. Xu Bei, Chen Bin. Structure and Evolution of the Mesozoic Orogenic Belt Between the North China Plate and the Siberian Plate in Northern Inner Mongolia[J]. Science in China:Series D:Earth Sciences, 1997, 27(3):227-232.
[3] 李锦轶,肖序常. 对新疆地壳结构与构造演化几个问题的简要评述[J]. 地质科学, 1999, 34(4):405-419. Li Jinyi, Xiao Xuchang. Brief Reviews on Some Issues of Framework and Tectonic Evolutiom of Xinjiang Crust, NW China[J]. Chinese Journal of Geology, 1999, 34(4):405-419.
[4] Xiao Wenjiao, Windley B, Hao Jie, et al. Accretion Leading to Collision and the Permian Solonker Suture, Inner Mongolia, China:Termination of the Central Asian Orogenic Belt[J]. Tectonics, 2003, 22(6):1069-1075.
[5] Xiao Wenjiao, Windley B, Sun Shu, et al. A Tale of Amalgamation of Three Permo-Triassic Collage Systems in Central Asia:Oroclines, Sutures, and Terminal Accretion[J]. The Annual Review of Earth and Planetary Sciences, 2015, 43:1611-1631.
[6] 肖文交,舒良树,高俊,等. 中亚造山带大陆动力学过程与成矿作用[J]. 中国基础科学, 2009, 11(3):14-19. Xiao Wenjiao, Shu Liangshu, Gao Jun, et al. Geodynamic Processes of the Central Asian Orogenic Belt and Its Metallogeny[j]. China Basic Science, 2009,11(3):14-19.
[7] Zhou Jianbo, Wilde S A, Zhang Xingzhou, et al. The Onset of Pacific Margin Accretion in NE China:Evidence from the Heilongjiang High-Pressure Metamorphic Belt[J]. Tectonophysics, 2009, 478(3):230-246.
[8] Xu Bei, Charvet J, Chen Yan, et al. Middle Paleozoic Convergent Orogenic Belts in Western Inner Mongolia (China):Framework, Kinematics, Geochronology and Implications for Tectonic Evolution of the Central Asian Orogenic Belt[J]. Gondwana Research, 2013, 23(4):1342-1364.
[9] Song Shuguang, Wang Mingming, Xu Xin, et al. Ophiolites in the Xing'an-Inner Mongolia Accretionary Belt of the CAOB:Implications for Two Cycles of Seafloor Spreading and Accretionary Orogenic Events[J]. Tectonics, 2015,34(10):2221-2248.
[10] 周建波,石爱国,景妍. 东北地块群:构造演化与古大陆重建[J]. 吉林大学学报(地球科学版), 2016, 46(4):1042-1055. Zhou Jianbo, Shi Aiguo, Jing Yan. The Combined NE China Blocks:Tectonic Evolution and Supercontinent Reconstructions[J]. Journal of Jilin University(Earth Science Edition), 2016, 46(4):1042-1055.
[11] Han Jie, Zhou Jianbo, Wilde S A, et al. Provenance Analysis of the Late Paleozoic Sedimentary Rocks in the Xilinhot Terrane, NE China, and Their Tectonic Implications[J]. Journal of Asian Earth Sciences, 2017, 144:69-81.
[12] Liu Yongjiang, Li Weimin, Feng Zhiqiang, et al. A Review of the Paleozoic Tectonics in the Eastern Part of Central Asian Orogenic Belt[J]. Gondwana Research, 2017, 43:123-148.
[13] 吴福元, 江博明, 林强.中国北方造山带造山后花岗岩的同位素特点与地壳生长意义[J]. 科学通报, 1997, 42(20):2188-2192. Wu Fuyuan, Jiang Boming, Lin Qiang, Highly Fractiontes I-Type Granites in Northeastern China:Geochemistry, Petrogenesis and Implication for Continental Crustal Growth[J]. Chinese Science Bulletin, 1997,42(20):2188-2192.
[14] 朱永峰,孙世华,毛骞,等. 内蒙古锡林格勒杂岩的地球化学研究:从Rodinia聚合到古亚洲洋闭合后碰撞造山的历史记录[J]. 高校地质学报, 2004, 10(3):343-355. Zhu Yongfeng, Sun Shihua, Mao Qian, et al. Geochemistry of the Xilingele Complex, Inner Mongolia:A Historic Record from Rodinia Accretion to Continental Collision After Closure of the Paleo-Asian Ocean[J]. Geological Journal of China Universities, 2004,10(3):343-355.
[15] Wu Fuyuan, Sun Deyou, Ge Wenchun, et al. Geochronology of the Phanerozoic Granitoids in Northeastern China[J]. Journal of Asian Earth Sciences, 2011, 41(1):1-30.
[16] 许文良,王枫,裴福萍,等. 中国东北中生代构造体制与区域成矿背景:来自中生代火山岩组合时空变化的制约[J]. 岩石学报, 2013, 29(2):339-353. Xu Wenliang, Wang Feng, Pei Fuping, et al. Mesozoic Tectonic Regimes and Regional Ore-Forming Background in NE China:Constraints from Spatial and Temporal Variations of Mesozoic Volcanic Rock Associations[J]. Acta Petrologica Sinica, 2013,29(2):339-353.
[17] 许文良,孙晨阳,唐杰,等. 兴蒙造山带的基底属性与构造演化过程[J]. 地球科学, 2019, 44(5):1620-1646. Xu Wenliang, Sun Chenyang, Tang Jie, et al. Basement Nature and Tectonic Evolution of the Xing'an-Mongolian Orogenic Belt[J]. Earth Sciences, 2019, 44(5):1620-1646.
[18] Kroner A, Kovach V, Belousova E, et al. Reassessment of Continental Growth During the Accretionary History of the Central Asian Orogenic Belt[J]. Gondwana Research, 2014, 25(1):103-125.
[19] 王涛,童英,张磊,等.中亚造山系花岗岩时空演化框架及大地构造意义[C]//2014年中国地球科学联合学术年会:专题45:中亚-兴蒙造山带.北京:中国地质科学院地质研究所, 2014:2139-2142. Wang Tao, Tong Ying, Zhang Lei, et al. Spatiotemporal Evolution Framework and Tectonic Significance of Granites in the Central Asian Orogenic System[C]//2014 China Geoscience Joint Academic Conference:Topic 45:Central Asia-Xingmeng Orogen. Beijing:Instititute of Geology, Chinese Academy of Sciences,2014:2139-2142.
[20] Jian Ping, Kröner A, Shi Yuruo, et al. Age and Provenance Constraints on Seismically-Determined Crustal Layers Beneath the Paleozoic Southern Central Asian Orogen, Inner Mongolia, China[J]. Journal of Asian Earth Sciences, 2016, 123:119-141.
[21] Rong Jiayu, Boucout A J, Su Yangzhen, et al. Biogeographical Analysis of Late Silurian Brachiopod Faunas, Chiefly from Asia and Australia[J]. Lethaia, 1995, 28(1):39-60.
[22] Shi Guorong. The Marine Permian of East and Northeast Asia:An Overview of Biostratigraphy, Palaeobiogeography and Palaeogeographical Implications[J]. Journal of Asian Earth Sciences, 2006, 26:175-206.
[23] Li Wenhui, Keller G R, Gao Rui, et al. Crustal Structure of the Northern Margin of the North China Craton and Adjacent Region from SinoProbe02 North China Sismic WAR/R Experiment[J]. Tectonophysics, 2013, 606:116-126.
[24] Hou Hesheng, Wang Haiyan, Gao Rui, et al. Fine Crustal Structure and Deformation Beneath the Great Xing'an Ranges, CAOB:Revealed by Deep Seismic Reflection Profile[J]. Journal of Asian Earth Sciences, 2015,13:491-500.
[25] Liang Hongda, Gao Rui, Hou Hesheng, et al. Lithospheric Electrical Structure of the Great Xing'an Range[J]. Journal of Asian Earth Sciences, 2015, 113:501-507.
[26] 韩江涛,康建强,刘财,等. 中亚造山带东段软流圈分布特征:基于长周期大地电磁探测的结果[J]. 地球物理学报, 2019, 62(3):1148-1158. Han Jiangtao, Kang Jianqiang, Liu Cai, et al. Characteristics of the Asthenosphere Structure Beneath the Eastern Segment of the Central Asia Orogenic Belt Inferred from a Long-Period Magnetotelluric Survey[J]. Chinese Journal of Geophysics,2019,62(3):1148-1158.
[27] Brown L, Barazangi M, Kaufman S, et al. The First Decade of COCORP:1974-1984[J]. Reflection Seismology:A Global Perspective, 1986:107-120.
[28] Clowes R, Cook F, Green A, et al. LITHOPROBE:New Perspectives on Crustal Evolution[J]. Canadian Journal of Earth Sciences, 1992, 29:1813-1864.
[29] Gao Rui, Lu Zhanwu, Klemperer S L, et al. Crustal-Scale Duplexing Beneath the Yarlung Zangbo Suture in the Western Himalaya[J]. Nature Geoscience, 2016, 9:555-560.
[30] Chen Xuanhua, Gao Rui, Xiong Xiaosong, et al. Deep Seismic Reflection Profiling of the Qilian Orogenic Belt:Evidence for Bi-Directional Subduction of the Proto-Tethys Ocean Plate and Northward Growth of the Qinghai-Tibet Plateau[J]. Acta Geologica Sinica, 2019, 93:369-369.
[31] 侯贺晟,高锐,卢占武,等. 庐枞铁多金属矿集区龙桥铁矿反射地震初至波层析成像与隐伏矿床预测[J]. 岩石学报, 2010, 26(9):2623-2629. Hou Hesheng, Gao Rui, Lu Zhanwu, et al. Reflection Seismic First-Arrival Wave Tomography of Longqiao Iron Deposit and Concealed Deposit Forecast in Luzong Iron-Polymetallic Ore Concentrated Area[J]. Acta Petrologica Sinica,2010, 26(9):2623-2629.
[32] 任继舜,王作勋,陈炳蔚,等. 从全球看中国大地构造:中国及邻区大地构造图简要说明[M]. 北京:地质出版社, 1999. Ren Jishun, Wang Zuoxun, Chen Bingwei, et al. Global View of China's Tectonic Structure:A Brief Description of the Tectonic Map of China and Its Neighboring Areas[M]. Beijing:Geological Publishing House,1999.
[33] 王海燕,高锐,卢占武,等. 地球深部探测的先锋:深地震反射方法的发展与应用[J]. 勘探地球物理进展, 2006, 29(1):7-13,19. Wang Haiyan, Gao Rui, Lu Zhanwu, et al. Pioneer of Deep Earth Exploration:Development and Application of Deep Seismic Reflection Methods[J]. Progress in Exploration Geophysics, 2006, 29(1):7-13,19.
[34] 刘子龙,卢占武,贾君莲,等. 利用深地震反射剖面开展矿集区深部结构的探测:现状与实例[J]. 地球科学, 2019, 44(6):2084-2105. Liu Zilong, Lu Zhanwu, Jia Junlian, et al. Probing Deep Structures in Mining Areas Using Deep Seismic Reflection Profiles:Status and Examples[J]. Earth Sciences,2019, 44(6):2084-2105.
[35] 王海燕,高锐,卢占武,等. 深地震反射剖面揭露大陆岩石圈精细结构[J]. 地质学报, 2010, 84(6):818-839. Wang Haiyan, Gao Rui, Lu Zhanwu, et al. Fine Structure of the Continental Lithosphere Circle Revealed by Deep Seismic Reflection Profile[J]. Acta Geologica Sinica, 2010, 84(6):818-839.
[36] 王立会,梁久亮,彭刘亚. 初至波层析成像技术在隐伏断裂探测中的应用[J]. CT理论与应用研究, 2015, 24(1):29-36. Wang Lihui, Liang Jiuliang, Peng Liuya, et al. Application of First Arrival Tomography in Detecting Hidden Faults[J]. CT Theoretical and Applied Research, 2015, 24(1):29-36.
[37] 侯贺晟,高锐,卢占武,等. 青藏高原羌塘盆地中央隆起近地表速度结构的初至波层析成像试验[J]. 地质通报, 2009, 28(6):738-745. Hou Hesheng, Gao Rui, Lu Zhanwu, et al. First Arrival Seismic Tomographic Imaging Test of the Near-Surface Velocity Structure of Central Uplift in the Qiangtang Basin, Qinghai-Tibet Plateau[J]. Geological Bulletin of China, 2009, 28(6):738-745.
[38] 侯贺晟,高锐,贺日政,等. 盆山结合部近地表速度结构与静校正方法研究:以西南天山与塔里木盆地结合部为例[J]. 石油物探, 2010, 49(1):7-11,15. Hou Hesheng, Gao Rui, He Rizheng, et al. Study on Near-Surface Velocity Structure and Static Correction Method of Basin-Mountain Junction:Taking the Junction of Tianshan and Tarim Basin in Southwest China as an Example[J]. Geophysical Prospecting for Petroleum, 2010, 49(1):7-11,15.
[39] Snyder D B, Roberts B J. Seismic Tomographic Cross-Sections of the Bowser Basin in Northwest British Columbia, Canada[J]. Bulletin of Canadian Petroleum Geology, 2007, 55:275-284.
[40] 李英康,高锐,姚聿涛,等. 华北克拉通北缘-西伯利亚板块南缘的地壳速度结构特征[J]. 地球物理学报, 2014, 57(2):484-497. Li Yingkang, Gao Rui, Yao Yutao, et al, Crustal Velocity Structure from the Northern Margin of the North China Craton to the Southern Margin of the Siberian Plate[J]. Chinese Journal of Geophysics, 2014,57(2):484-497.
[41] Zhang Shihong, Gao Rui, Li Huanxin, et al. Crustal Structures Revealed from a Deep Seismic Reflection Profile Across the Solonker Suture Zone of the Central Asian Orogenic Belt, Northern China:An Integrated Interpretation[J]. Tectonophysics, 2014, 612/613:26-39.
[42] Tan Xiaomiao, Wang Haiyan, Gao Rui, et al. Double Side Deep Crust Scale Subduction Toward the South and North:Indicating the Polarity of the Subduction of the Ancient Asian Ocean, Evidence from Large Dynamite Shots of the Deep Seismic Reflection Rrofile[C]//AGU Fall Meeting Abstracts. San Francisco:American Geophysical Union, 2019:T23E-0487.
[43] Li Hongqiang, Gao Rui, Xiong Xiaosong, et al. Moho Fabrics of North Qinling Belt, Weihe Graben and Ordos Block in China Constrained from Large Dynamite Shots[J]. Geophysical Journal International, 2017, 209(2):643-653.
[44] Li Hongqiang, Gao Rui, Li Wenhui, et al. The Moho Structure Beneath the Yarlung Zangbo Suture and Its Implications:Evidence from Large Dynamite Shots[J]. Tectonophysics, 2018, 747/748:390-401.
[45] Oncken O, Ash G, Haberland C, et al. Seismic Imaging of a Convergent Continental Margin and Plateau in the Central Andes (Andean Continental Research Project 1996(ANCORP'96))[J]. Journal of Geophysical Research:Solid Earth, 2003, 108(B7):2328-2353.
[46] Guo Xiaoyu, Gao Rui, Zhao Junmeng, et al. Deep-Seated Lithospheric Geometry in Revealing Collapse of the Tibetan Plateau[J]. Earth-Science Reviews, 2018, 185:751-762.
[1] 孙海瑞, 吕志成, 于晓飞, 李永胜, 杜泽忠, 吕鑫, 公凡影. 甘肃柳园地区早二叠世正长花岗斑岩脉锆石U-Pb年代学、岩石地球化学特征——对北山造山带晚古生代构造背景的指示[J]. 吉林大学学报(地球科学版), 2020, 50(5): 1433-1449.
[2] 吕斌, 王涛, 童英, 张磊, 杨奇荻, 张建军. 中亚造山带东部岩浆热液矿床时空分布特征及其构造背景[J]. 吉林大学学报(地球科学版), 2017, 47(2): 305-343.
[3] 邵济安, 张履桥, 牟保磊. 中亚造山带东段铀、钼矿床分布与中间地块的关系[J]. J4, 2011, 41(6): 1667-1675.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!