吉林大学学报(地球科学版) ›› 2020, Vol. 50 ›› Issue (5): 1433-1449.doi: 10.13278/j.cnki.jjuese.20200085

• 整装勘查区矿床成因与成矿作用研究专辑 • 上一篇    下一篇

甘肃柳园地区早二叠世正长花岗斑岩脉锆石U-Pb年代学、岩石地球化学特征——对北山造山带晚古生代构造背景的指示

孙海瑞1,2, 吕志成1,2, 于晓飞1,2, 李永胜1,2, 杜泽忠1,2, 吕鑫1,2, 公凡影1,2   

  1. 1. 中国地质调查局发展研究中心, 北京 100037;
    2. 自然资源部矿产勘查技术指导中心, 北京 100083
  • 收稿日期:2020-04-12 出版日期:2020-09-26 发布日期:2020-09-29
  • 作者简介:孙海瑞(1987-),男,高级工程师,主要从事岩石学及矿床学研究,E-mail:HaiRuiSun@126.com
  • 基金资助:
    国家重点研发计划项目(2018YFC0603806,2018YFC0603704);中国地质调查局项目(DD20160050);中央高校基本科研业务费专项资金项目(310827171122)

Late Paleozoic Tectonic Evolution of Beishan Orogenic Belt: Chronology and Geochemistry Constraints of Early Permian Syenogranitic Porphyry Dyke in Liuyuan Area, Gansu Province

Sun Hairui1,2, Lü Zhicheng1,2, Yu Xiaofei1,2, Li Yongsheng1,2, Du Zezhong1,2, Lü Xin1,2, Gong Fanying1,2   

  1. 1. Development and Research Center, China Geological Survey, Beijing 100037, China;
    2. Mineral Exploration Technical Guidance Center, Ministry of Natural Resources, Beijing 100083, China
  • Received:2020-04-12 Online:2020-09-26 Published:2020-09-29
  • Supported by:
    Supported by National Key R & D Program of China (2018YFC0603806,2018YFC0603704), Project of China Geological Survey (DD20160050) and Fundamental Research Funds for the Central Universities (310827171122)

摘要: 甘肃北山地区位于中亚造山带中段,是诠释中亚造山带构造演化的关键区域之一,长期以来受到地质学界的广泛关注。柳园地区位于甘肃北山南带,区内脉岩发育,这些岩脉的研究可以为阐释北山造山带晚古生代构造背景提供更多证据。基于此,本文选取位于甘肃柳园地区的正长花岗斑岩脉开展了系统的锆石U-Pb-Hf同位素和全岩主量、微量元素分析。LA-ICP-MS锆石U-Pb分析显示,岩脉侵位于早二叠世((288.5±1.4)Ma)。全岩地球化学分析显示,正长花岗斑岩脉的SiO2和全碱质量分数较高,Fe、Mg、Ca、Al和P质量分数较低,Rb、Th、U和Pb相对富集,Ba、Nb、La、Ce、Sr和Ti等元素相对亏损,Eu负异常显著,具有较高的Rb/Sr值和较低的K/Rb值及锆石饱和温度(730~844℃,集中于740℃左右),显示该岩脉为高钾钙碱性高分异I型花岗岩,并具有俯冲带岩浆活动的地球化学特征。正长花岗斑岩脉具有较低的Zr/Hf值(18.42~28.01,平均值为22.37)和Th/U值(3.82~7.99,平均值为5.34),与平均地壳组分接近,锆石εHft)值为2.94~9.66,平均值为5.72,TDM2值为955~611 Ma,指示源区主体为新元古代地壳的部分熔融,并存在幔源物质加入。根据构造判别图解并结合前人关于二叠纪区域构造变形、盆地沉积物源、岩浆演化等方面的研究结果,笔者认为该正长花岗斑岩脉形成于俯冲作用过程中的局部伸展环境,并认为北山地区增生造山事件至少持续到早二叠世。

关键词: 正长花岗斑岩脉, 高分异I型花岗岩, 地球化学, 早二叠世, 北山, 中亚造山带

Abstract: Beishan orogenic belt is located in the middle part of Central Asia orogenic belt (CAOB), and it is crucial to discuss the accretionary evolution of the CAOB. Liuyuan area is in the southern part of Beishan orogenic belt, where granitoid rocks and different types of dykes are widely distributed. To study these rocks and dykes can provide us with more important clues about the reconstruction of the geological evolution of this area. The LA-ICP-MS zircon U-Pb dating of the syenogranitic porphyry dyke in northeast Liuyuan area yields the weighted 206Pb/238U ages of (288.5±1.4) Ma, the Early Permian. The geochemical results show that the contents of SiO2 and total alkali of the syenogranitic porphyry are high,while the contents of Fe, Mg, Ca, Al and P are low. In addition, the porphyry is characterized by rich in Rb, Th, U and Pb but poor in Ba, Nb, La, Ce, Sr and Ti, with obvious Eu negative anomaly. The value of Rb/Sr is high, the value of K/Rb is low, and the saturation temperature of zircon is lower (730-844 ℃, concentrating around 740 ℃). Based on the above geochemical results and the comprehensive discriminant analysis, we believe that the porphyry belongs to high-K calc-alkaline and high fractionated I-type granites. Also, the syenogranitic porphyry presents a narrow range of Zr/Hf (18.42 to 28.01, average 22.37) and Th/U values (3.82 to 7.99, average 5.34) respectively, which is similar to those of crust sourced rocks. The syenogranitic porphyry show positive εHf (t) values, varying from 2.94 to 9.66, with average of 5.72, and relatively young TDM2 ages, ranging from 955 to 611 Ma. Considering the occurrences of the coeval mafic igneous rocks in this region, we believe that the porphyry magma should be mainly derived from the partial melting of the crust-derived metamorphic igneous rocks with some contribution of mantle materials. The tectonic discriminant analysis shows that the Early Permian syenogranitic porphyry was formed in a subduction environment. Based on the previous studies on the regional tectonic deformation, basin sediment source, and the magma evolution from Permian to Triassic, it is concluded that the accretionary orogenic events in the southern part of Beishan orogenic belt lasted at least until the Early Permian, which provided important constraints on the reconstruction of the tectonic evolution of the Late Paleozoic Beishan orogenic belt.

Key words: syenogranitic porphyry dyke, high fractionated I-type granite, geochemistry, Early Permian, Beishan area, Central Asia orogenic belt

中图分类号: 

  • P588.1
[1] Şengör A M C, Natal'in B A, Burtman V S. Evolution of the Altaid Tectonic Collage and Palaeozoic Crustal Growth in Eurasia[J]. Nature, 1993, 364:299-307.
[2] 和钟铧, 王启智, 王强. 大兴安岭索伦地区哲斯组碎屑岩地球化学特征和锆石U-Pb年龄对沉积物源属性约束[J]. 吉林大学学报(地球科学版), 2020, 50(2):405-424. He Zhonghua, Wang Qizhi, Wang Qiang.Geochemistry and Zircon U-Pb Ages of Clastic Rocks of Zhesi Formation in Suolun Region, Great Xing'an Range:Constraints on Origins of Sediment Provenance[J]. Journal of Jilin University (Earth Science Edition), 2020, 50(2):405-424.
[3] 肖文交, 舒良树, 高俊, 等. 中亚造山带大陆动力学过程与成矿作用[J]. 新疆地质, 2008, 26(1):4-8. Xiao Wenjiao, Shu Liangshu, Gao Jun, et al. Geodynamic Processes of the Central Asian Orogenic Belt and Its Metallogeny[J]. Xinjiang Geology, 2008, 26(1):4-8.
[4] 左国朝, 刘义科, 刘春燕. 甘新蒙北山地区构造格局及演化[J]. 甘肃地质, 2003, 12(1):1-15. Zuo Guochao, Liu Yike, Liu Chunyan. Framework and Eevolotion of the Tectonic Structure in Beishan Aarea Across Gansu Proveince, Xinjiang Autonomous Region and Inner Mongolia Autonomous Region[J]. Gansu Geology, 2003, 12(1):1-15.
[5] 聂凤军, 江思宏, 白大明, 等. 北山地区金属矿床成矿规律及找矿方向[M].北京:地质出版社, 2002. Nie Fengjun, Jiang Sihong, Bai Daming, et al. Metallogenic Studies and Ore Prospecting in the Conjunction Area of Inner Mongolia Autonomous Region, Gansu Province and Xinjiang Uygur Autonomous Region (Beishjan Mt), Northwest China[M]. Beijing:Geological Publishing House, 2002.
[6] Zheng R G, Wu T R, Zhang W, et al. Geochronology and Geochemistry of Late Paleozoic Magmatic Rocks in the Yinwaxia Area, Beishan:Implications for Rift Magmatism in the Southern Central Asian Orogenic Belt[J]. Journal of Asian Earth Sciences, 2014, 91:39-55.
[7] He Z Y, Klemd R, Yan L L, et al. The Origin and Crustal Evolution of Microcontinents in the Beishan Orogen of the Southern Central Asian Orogenic Belt[J]. Earth-Science Reviews, 2018, 185:1-14.
[8] 宋东方, 肖文交, 韩春明, 等. 北山中部增生造山过程:构造变形和40Ar-39Ar年代学制约[J]. 岩石学报, 2018, 34(7):231-242. Song Dongfang, Xiao Wenjiao, Han Chunming, et al. Accretionary Processes of the Central Segment of Beishan:Constraints from Structural Deformation and 40Ar-39Ar Geochronology[J]. Acta Petrologica Sinica, 2018, 34(7):231-242.
[9] 李锦轶, 何国琦, 徐新, 等. 新疆北部及邻区地壳构造格架及其形成过程的初步探讨[J]. 地质学报, 2006, 80(1):148-168. Li Jinyi, He Guoqi, Xu Xin, et al. Crustal Tectonic Framework of Northern Xinjiang and Adjacent Regions and Its Formation[J]. Acta Geologica Sinica, 2006, 80(1):148-168.
[10] 刘畅, 赵泽辉, 郭召杰. 甘肃北山地区煌斑岩的年代学和地球化学及其壳幔作用过程讨论[J]. 岩石学报, 2006, 22(5):1294-1306. Liu Chuang, Zhao Zehui, Guo Zhaojie, et al. Chronology and Geochemistry of Lamprophyre Dykes from Beishan Area, Gansu Province and Implications for the Crust-Mantle Interaction[J]. Acta Petrologica Sinica, 2006, 22(5):1294-1306.
[11] Li S, Wilde S A, Wang T. Early Permian Post-Collisional High-K Granitoids from Liuyuan Area in Southern Beishan Orogen, NW China:Petrogenesis and Tectonic Implications[J]. Lithos, 2013, 179:99-119.
[12] Su B X, Qin K Z, Santosh M, et al. The Early Permian Mafic-Ultramafic Complexes in the Beishan Terrane, NW China:Alaskan-Type Intrusives or Rift Cumulates?[J]. Journal of Asian Earth Sciences, 2013, 66:175-187.
[13] 卢进才, 牛亚卓, 魏仙样, 等. 北山红石山地区晚古生代火山岩LA-ICP-MS锆石U-Pb年龄及其构造意义[J]. 岩石学报, 2013, 29(8):2685-2694. Lu Jincai, Niu Yazhuo, Wei Xianyang, et al. LA-ICP-MS Zircon U-Pb Dating of the Late Paleozoic Volcanic Rocks from the Hongshishan Area of the Beishan Orogenic Belt and Its Tectonic Significances[J]. Acta Petrologica Sinica, 2013, 29(8):2685-2694.
[14] 过磊, 王国强, 郭琳, 等. 北山造山带南部芦草沟地区早三叠世酸性脉岩成因[J]. 矿物岩石地球化学通报, 2018, 37(3):502-512. Guo Lei, Wang Guoqiang, Guo Lin, et al.Petrogenesis of Early Triassic Felsic Dikes in the Lucaogou Area of Southern Beishan Orogenic Belt[J]. Bulletin of Mineralogy Petrology and Geochemistry, 2018, 37(3):502-512.
[15] 罗照华, 魏阳, 辛后田, 等. 造山后脉岩组合的岩石成因:对岩石圈拆沉作用[J]. 岩石学报, 2006, 22(6):1672-1684. Luo Zhaohua, Wei Yang, Xin Houtian, et al. Petrogenesis of the Post-Orogenic Dike Complex:Constraints to Lithosphere Delamination[J]. Acta Petrologica Sinica, 2006, 22(6):1672-1684.
[16] Zhang Y Y, Yuan C, Sun M, et al. Permian Doleritic Dikes in the Beishan Orogenic Belt, NW China:Asthenosphere-Lithosphere Interaction in Response to Slab Break-off[J]. Lithos, 2015, 233(15):174-192.
[17] 杨春霞, 王启航, 高翔, 等. 甘肃北山造山带晚古生代辉绿岩墙的地球化学特征及构造背景[J]. 甘肃地质, 2015, 24(1):19-23. Yang Chunxia, Wang Qihang, Gao Xiang, et al. Geochemical Characterisitics and Tectonic Setting of Diabase in Beishan, Gansu[J]. Gansu Geology, 2015, 24(1):19-23.
[18] 彭海练, 高峰, 菅坤坤, 等. 内蒙古红石山南辉长岩体锆石U-Pb年龄及地质意义[J]. 矿产勘查, 2018, 9(9):1705-1712. Peng Hailian, Gao Feng, Jian Kunkun, et al. Zircon U-Pb Age and Its Geological Significance of Gabbro in the South Hongshi Mountain, Ejinna, Inner Mongolia Autonomous Region[J]. Mineral Exploration, 2018, 9(9):1705-1712.
[19] Xiao W J, Mao Q G, Windley B F, et al. Paleozoic Multiple Accretionary and Collisional Processes of the Beishan Orogenic Collage[J]. American Journal of Science, 2010, 310(10):1553-1594.
[20] 甘肃省地质矿产局. 甘肃省岩石地层[M]. 武汉:中国地质大学出版社, 1997. Bureau of Geology and Mineral Resources of Gansu Province. Lithostratigraphy of Gansu Province[M]. Wuhan:China University of Geosciences Press, 1997.
[21] 牛亚卓, 卢进才, 刘池阳, 等. 甘蒙北山地区海相二叠系时代及其区域对比[J]. 地质学报,2018, 92(6):1131-1148. Niu Yazhuo, Lu Jincai, Liu Chiyang, et al. Chronostratigraphy and Regional Comparison of Marine Permian System in the Beishan Region, North China[J]. Acta Geologica Sinica, 2018, 92(6):1131-1148.
[22] 江思宏, 聂凤军. 北山地区花岗岩类成因的Nd同位素制约[J]. 地质学报, 2006, 80(6):826-842. Jiang Sihong, Nie Fengjun. Nd-Isotope Constraints on Origin of Granitoids in Beishan Mountain Area[J]. Acta Geologica Sinica, 2006, 80(6):826-842.
[23] Liu Y S, Hu Z C, Gao S, et al. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS Without Applying an Internal Standard[J]. Chemical Geology, 2008, 257(1):34-43.
[24] Liu Y S, Hu Z C, Zong K Q, et al. Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 2010, 55(15):1535-1546.
[25] Wu F Y, Yang Y H, Xie L W, et al. Hf Isotopic Compositions of the Standard Zircons and Baddeleyites Used in U-Pb Geochronology[J]. Chemical Geology, 2006, 234(1):105-126.
[26] Blicherttoft J, Albarède F. The Lu-Hf Isotope Geochemistry of Chondrites and the Evolution of the Mantle-Crust System[J]. Earth & Planetary Science Letters, 1998, 154(1/2/3/4):243-258.
[27] Griffin W L, Pearson N J, Belousova E A, et al. The Hf Isotope Composition of Cratonic Mantle:LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites[J]. Geochimica et Cosmochimica Acta, 2000, 64(1):133-147.
[28] Watson E B, Harrison T M. Zircon Saturation Revisited:Temperature and Composition Effects in a Variety of Crustal Magma Types[J]. Earth & Planetary Science Letters, 1983, 64(2):295-304.
[29] Middlemost E A K. Naming Materials in the Magma/Igneous Rock System[J]. Annual Review of Earth & Planetary Sciences, 1994, 37(3/4):215-224.
[30] Peccerillo A, Taylor S R. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey[J]. Contributions to Mineralogy & Petrology, 1976, 58(1):63-81.
[31] Maniar P D, Piccoli P M. Tectonic Discrimination of Granitoids[J]. GSA Bulletin, 1989, 101(5):635-643.
[32] Sun S S, Mcdonough W F. Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes[J]. Geological Society London Special Publications, 1989, 42(1):313-345.
[33] Whalen J B, Currie K L, Chappell B W. A-Type Granites:Geochemical Characteristics, Discrimination and Petrogenesis[J]. Contributions to Mineralogy & Petrology, 1987, 95(4):407-419.
[34] Sylvester P J, Liegeois J P. Post-Collisional Strongly Peraluminous Granites[J]. Lithos, 1998, 45(1/2/3/4):29-44.
[35] Foley S F, Barth M G, Jenner G A. Rutile/Melt Partition Coefficients for Trace Elements and an Assessment of the Influence of Rutile on the Trace Element Characteristics of Subduction Zone Magmas[J]. Geochim Cosmochim Acta, 2000, 64(5):933-938.
[36] Clemens J D. S-Type Granitic Magmas:Petrogenetic Issues, Models and Evidence[J]. Earth Science Reviews, 2003, 61(1):1-18.
[37] Xiong X L, Adam J. Rutile Stability and Rutile/Melt HFSE Partitioning During Partial Melting of Hydrous Basalt:Implications for Adakite/TTG Genesis[J]. Chemical Geology, 2005, 218(3):339-359.
[38] Chappell B W, Sial A N, Stephens W E, et al. Aluminium Saturation in I-and S-Type Granites and the Characterization of Fractionated Haplogranites[J]. Lithos, 1999, 46(3):535-551.
[39] 许伟, 徐学义, 牛亚卓,等. 北山南部早二叠世A型流纹岩地球化学特征及其地球动力学意义[J]. 岩石学报,2018,34(10):3011-3033. Geochronology, Petrogenesis and Tectonic Implications of Early Permian A-Type Rhyolite from Southern Beishan Orogen, NW China[J]. Acta Petrologica Sinica, 2018,34(10):3011-3033.
[40] Zhang Y Y, Dostal J, Zhao Z H, et al. Geochronology, Geochemistry and Petrogenesis of Mafic and Ultramafic Rocks from Southern Beishan Area, NW China:Implications for Crust-Mantle Interaction[J]. Gondwana Research, 2011, 20(4):816-830.
[41] Chappell B W, Bryant C J, Wyborn D. Peraluminous I-Type Granites[J]. Lithos, 2012, 153(8):142-153.
[42] Taylor S R, Mclennan S M. The Continental Crust:Its Composition and Evolution[M]. London:Blackwell, 1985.
[43] 张文, 冯继承, 郑荣国, 等. 甘肃北山音凹峡南花岗岩的锆石LA-ICP MS定年及其构造意义[J]. 岩石学报, 2011, 27(6):1649-1661. Zhang Wen, Feng Jicheng, Zheng Rongguo, et al. LA-ICP MS Zircon U-Pb Ages of the Granites from the South of Yin'aoxia and Their Tectonic Significances[J]. Acta Petrologica Sinica, 2011, 27(6):1649-1661.
[44] Ao S J, Xiao W J, Han C M, et al. Geochronology and Geochemistry of Early Permian Mafic-Ultramafic Complexes in the Beishan Area, Xinjiang, NW China:Implications for Late Paleozoic Tectonic Evolution of the Southern Altaids[J]. Gondwana Research, 2010, 18(2/3):466-478.
[45] Zheng R G, Li J Y, Zhang J, et al. Permian Oceanic Slab Subduction in the Southmost of Central Asian Orogenic Belt:Evidence from Adakite and High-Mg Diorite in the Southern Beishan[J]. Lithos, 2020, 358/359.doi.10.1016/j.lithos.2020.105406.
[46] Xiao W J, Windley B F, Han C M, et al. Late Paleozoic to Early Triassic Multiple Roll-Back and Oroclinal Bending of the Mongolia Collage in Central Asia[J]. Earth-Science Reviews, 2018, 186:94-128.
[47] 左国朝, 刘春燕. 北山泥盆纪碰撞造山火山-磨拉石地质构造及地球化学特征[J]. 甘肃地质, 1995, 4(1):35-43. Zuo Guochao, Liu Chunyan. Volcano-Molasse Geological Structure and Geochemical Signtures in Devonian Period Collision Orogenic in Beishan[J]. Gansu Geology, 1995, 4(1):35-43.
[48] Guo Q Q, Xiao W J, Hou Q L, et al. Construction of Late Devonian Dundunshan Arc in the Beishan Orogen and Its Implication for Tectonics of Southern Central Asian Orogenic Belt[J]. Lithos, 2016, 184/185/186/187:361-378.
[49] 田健, 辛后田, 滕学建, 等. 内蒙古北山造山带白云山地区上泥盆统墩墩山组火山岩的厘定及其构造意义[J]. 岩石学报, 2020, 36(2):509-525. Tian Jian, Xin Houtian, Teng Xuejian, et al.The Determination of Volcanic Rocks in Upper Devonian Dundunshan Formation in the Baiyunshan Area of Beishan Orogenic Belt, Inner Mongolia[J]. Acta Petrologica Sinica, 2020, 36(2):509-525.
[50] 牛亚卓, 宋博, 周俊林, 等. 中亚造山带北山南部下泥盆统火山-沉积地层的岩相、时代及古地理意义[J]. 地质学报, 2020, 94(2):615-633. Niu Yazhuo, Song Bo, Zhou Junlin, et al.Lithofacies and Chronology of Volcano-Sedimentary Sequence in the Southern Beishan Region, Central Asian Orogenic Belt and Its Paleogeographical Implication[J]. Acta Geologica Sinica, 2020, 94(2):615-633.
[51] 毛启贵, 肖文交, 韩春明, 等. 北山柳园地区中志留世埃达克质花岗岩类及其地质意义[J]. 岩石学报, 2010, 26(2):584-596. Mao Qigui, Xiao Wenjiao, Han Chunming, et al.Discovery of Middle Silurian Adakite Granite and Its Tectonic Significance in Liuyuan Area, Beishan Moutains, NW China[J]. Acta Petrologica Sinica, 2010, 26(2):584-596.
[52] 姜洪颖, 贺振宇, 宗克清, 等. 北山造山带南缘北山杂岩的锆石U-Pb定年和Hf同位素研究[J]. 岩石学报, 2013, 29(11):3949-3967. Jiang Hongying, He Zhenyu, Zong Keqing, et al.Zircon U-Pb Dating and Hf Isotopic Studies on the Beishan Complex in the Southern Beishan Orogenic Belt[J]. Acta Petrologica Sinica, 2013, 29(11):3949-3967.
[53] 贺振宇, 孙立新, 毛玲娟, 等. 北山造山带南部片麻岩和花岗闪长岩的锆石U-Pb定年和Hf同位素:中元古代的岩浆作用与地壳生长[J]. 科学通报, 2015, 60(4):389-399. He Zhenyu, Sun Lixin, Mao Lingjuan, et al.Zircon U-Pb and Hf Isotopic Study of Gneiss and Granodiorite from the Southern Beishan Orogenic Collage:Mesoproterozoic Magmatism and Crustal Growth[J]. Chinese Science Bulletin, 2015, 60(4):389-399.
[54] Zhang W, Wu T R, Zheng R G, et al. Post-Collisional Southeastern Beishan Granites:Geochemistry, Geochronology, Sr-Nd-Hf Isotopes and Their Implications for Tectonic Evolution[J]. Journal of Asian Earth Sciences, 2012, 58:51-63.
[55] Zheng R G, Wu T R, Zhang W, et al. Late Paleozoic Subduction System in the Southern Central Asian Orogenic Belt:Evidences from Geochronology and Geochemistry of the Xiaohuangshan Ophiolite in the Beishan Orogenic Belt[J]. Journal of Asian Earth Sciences, 2013, 62:463-475.
[56] 赵宏刚, 梁积伟, 王驹, 等. 甘肃北山南带沙枣园复式岩体年代学、地球化学特征及其构造意义[J]. 地质学报, 2020, 94(2):396-425. Zhao Honggang, Liang Jiwei, Wang Ju, et al.Geochronology, Geochemical Characteristics and Tectonic Significance of the Shazaoyuan Composite Pluton in the Sounthern Beishan Mountains, Gansu Province, China[J]. Acta Geologica Sinica, 2020, 94(2):396-425.
[57] Pearce J A, Harris N B W, Tindle A G. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks[J]. Journal of Petrology, 1984, 25(4):956-983.
[58] Pearce J. Sources and Settings of Granitic Rocks[J]. Episodes, 1996, 19(4):120-125.
[59] Guo Q Q, Xiao W J, Windley B F, et al. Provenance and Tectonic Settings of Permian Turbidites from the Beishan Mountains, NW China:Implications for the Late Paleozoic Accretionary Tectonics of the Southern Altaids[J]. Journal of Asian Earth Sciences, 2012, 49(3):54-68.
[60] Liu X C, Chen B L, Jahn B M, et al. Early Paleozoic (ca 465 Ma) Eclogites from Beishan (NW China) and Their Bearing on the Tectonic Evolution of the Southern Central Asian Orogenic Belt[J]. Journal of Asian Earth Sciences, 2011, 42(4):715-731.
[61] Mao Q G, Xiao W J, Fang T H, et al. Late Ordovician to Early Devonian Adakites and Nb-Enriched Basalts in the Liuyuan Area, Beishan, NW China:Implications for Early Paleozoic Slab-Melting and Crustal Growth in the Southern Altaids[J]. Gondwana Research, 2012, 22(2):534-553.
[62] Su B X, Qin K Z, Sun H, et al. Subduction-Induced Mantle Heterogeneity Beneath Eastern Tianshan and Beishan:Insights from Nd-Sr-Hf-O Isotopic Mapping of Late Paleozoic Mafic-Ultramafic Complexes[J]. Lithos, 2012, 134/135:41-51.
[63] Ao S J, Xiao W J, Windley B F, et al. Paleozoic Accretionary Orogenesis in the Eastern Beishan Orogen:Constraints from Zircon U-Pb and 40Ar/39Ar Geochronology[J]. Gondwana Research, 2016, 30:224-235.
[64] Song D F, Xiao W J, Windley B F, et al. Metamorphic Complexes in Accretionary Orogens:Insights from the Beishan Collage, Southern Central Asian Orogenic Belt[J]. Tectonophysics, 2016, 688:135-147.
[65] Tian Z H, Xiao W J, Shan Y H, et al. Mega-Fold Interference Patterns in the Beishan Orogen (NW China) Created by Change in Plate Configuration During Permo-Triassic Termination of the Altaids[J]. Journal of Structural Geology, 2013, 52(5):119-135.
[66] Tian Z H, Xiao W J, Windley B F, et al. Structure, Age, and Tectonic Development of the Huoshishan-Niujuanzi Ophiolitic Mélange, Beishan, Southernmost Altaids[J]. Gondwana Research, 2014, 25(2):820-841.
[67] 张文, 吴泰然, 贺元凯, 等. 甘肃北山西涧泉子富碱高钾花岗岩体的锆石LA-ICP-MS定年及其构造意义[J]. 岩石矿物学杂志, 2010, 29(6):719-731. Zhang Wen, Wu Tairan, He Yuankai, et al. LA-ICP-MS Zircon U-Pb Ages of Xijianquanzi Alkali-rich Potassium-High Granites in Beishan, Gansu Province, and Their Tectonic Significance[J]. Acta Petrologica et Mineralogica, 2010, 29(6):719-731.
[68] Zhang W, Wu T R, Zheng R G, et al. Post-Collisional Southeastern Beishan Granites:Geochemistry, Geochronology, Sr-Nd-Hf Isotopes and Their Implications for Tectonic Evolution[J]. Journal of Asian Earth Sciences, 2012, 58:51-63.
[69] Gillespie J, Glorie S, Xiao W J, et al. Mesozoic Reactivation of the Beishan, Southern Central Asian Orogenic Belt:Insights from Low-Temperature Thermochronology[J]. Gondwana Research, 2017, 43:107-122.
[70] Liu Q, Zhao G, Han Y, et al. Detrital Zircon Provenance Constraints on the Final Closure of the Middle Segment of the Paleo-Asian Ocean[J]. Gondwana Research, 2019, 69:73-88.
[71] Xue S C, Qin K Z, Li C S, et al. Permian Bimodal Magmatism in the Southern Margin of the Central Asian Orogenic Belt, Beishan, Xinjiang, NW China:Petrogenesis and Implication for Post-Subduction Crustal Growth[J]. Lithos, 2018, 314/315:617-629.
[1] 赵亚云, 刘晓峰, 刘远超, 次琼, 郑常云, 杨春四, 李莉, 付海龙. 西藏昂仁县多仁则—桑阿卡地区铜多金属矿点含矿岩体成因及成矿意义[J]. 吉林大学学报(地球科学版), 2020, 50(5): 1323-1339.
[2] 黄式庭, 于晓飞, 吕志成, 刘家军, 李永胜, 杜泽忠, 吕鑫, 孙海瑞, 杜轶伦. 甘肃北山老金厂金矿床载金矿物特征、原位硫同位素组成及其对成矿的指示意义[J]. 吉林大学学报(地球科学版), 2020, 50(5): 1387-1403.
[3] 范媛媛, 刘云华, 于晓飞, 赵强, 李小严, 邓楠, 马塬皓. 甘肃武都金坑子金矿床地球化学特征及成因探讨[J]. 吉林大学学报(地球科学版), 2020, 50(5): 1404-1417.
[4] 康凯, 杜泽忠, 于晓飞, 李永胜, 吕鑫, 孙海瑞, 杜轶伦. 甘肃花牛山铅锌矿床闪锌矿LA-ICP-MS微量元素组成及其地质意义[J]. 吉林大学学报(地球科学版), 2020, 50(5): 1418-1432.
[5] 贺根文, 路思明, 彭琳琳, 于长琦, 李伟, 刘翠辉. 赣南狮吼山硫铁多金属矿区花岗岩地球化学、年代学特征及其成因[J]. 吉林大学学报(地球科学版), 2020, 50(5): 1491-1504.
[6] 余振东, 项新葵, 谭荣, 孙德明, 张斯. 赣北大湖塘平苗矿段白云母花岗岩锆石U-Pb年代学、地球化学及地质意义[J]. 吉林大学学报(地球科学版), 2020, 50(5): 1505-1517.
[7] 熊光强, 刘敏, 张达, 王忠. 内蒙古西乌旗迪彦庙蛇绿岩带内辉长岩地球化学及年代学[J]. 吉林大学学报(地球科学版), 2020, 50(5): 1599-1614.
[8] 余长胜, 杨言辰, 韩世炯, 杨昆林, 宋朝阳, 张易航, 王旺. 大兴安岭下嘎来奥伊铅锌矿床钾长花岗岩的岩石成因及地质意义[J]. 吉林大学学报(地球科学版), 2020, 50(4): 1042-1058.
[9] 任文恺, 王生云, 陈礼标, 吴少锋, 张海青. 青海同仁兰采地区花岗闪长岩LA-ICP-MS锆石U-Pb年代学、地球化学特征及其地质意义[J]. 吉林大学学报(地球科学版), 2020, 50(4): 1059-1074.
[10] 王德远, 续海金, 王攀, 贾敏, 高占冬. 大陆造山带深熔垮塌的岩石学、地球化学证据:以北大别深熔混合岩为例[J]. 吉林大学学报(地球科学版), 2020, 50(3): 675-693.
[11] 任云生, 刘小禾, 商青青, 陈聪, 杨群, 郝宇杰, 孙振明. 吉林省和龙地区鸡南BIF型铁矿床含矿建造地球化学特征及形成时代[J]. 吉林大学学报(地球科学版), 2020, 50(3): 800-814.
[12] 张健, 张海华, 陈树旺, 郑月娟, 张德军, 苏飞, 黄欣. 松辽盆地北部上二叠统林西组地球化学特征及地质意义[J]. 吉林大学学报(地球科学版), 2020, 50(2): 518-530.
[13] 陈会军, 于宏斌, 马永非, 陈井胜, 钱程, 刘世伟, 崔天日, 钟辉. 吉东南地区五女峰岩体锆石U-Pb年代学、岩石地球化学特征及其构造意义[J]. 吉林大学学报(地球科学版), 2020, 50(2): 531-541.
[14] 孟庆涛, 李金国, 刘招君, 胡菲, 徐川. 茂名盆地羊角含矿区始新统油柑窝组油页岩有机地球化学特征及沉积环境[J]. 吉林大学学报(地球科学版), 2020, 50(2): 356-367.
[15] 宋宇, 刘招君, Achim Bechtel, 徐银波, 孟庆涛, 孙平昌, 朱凯. 老黑山盆地下白垩统穆棱组油页岩与煤含油率控制因素[J]. 吉林大学学报(地球科学版), 2020, 50(2): 378-391.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!