吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (2): 607-623.doi: 10.13278/j.cnki.jjuese.20200007

• 地球探测与信息技术 • 上一篇    

融合地震属性和成像测井信息优化的储层缝洞带评价与钻井轨迹

王磊1, 沈金松1, 邹榕2, 蔺学敏2, 徐忠祥2, 苏朝阳1, 杨萍1   

  1. 1. 中国石油大学(北京)地球物理学院, 北京 102249;
    2. 中国石化西北油田分公司, 乌鲁木齐 830011
  • 收稿日期:2020-01-06 发布日期:2021-04-06
  • 通讯作者: 沈金松(1964-),男,教授,博士生导师,主要从事地球物理测井和电磁法勘探理论模拟与应用方面的研究,E-mail:shenjinsongcup@163.com E-mail:shenjinsongcup@163.com
  • 作者简介:王磊(1991-),男,博士研究生,主要从事地震多属性提取与优化、电成资料处理解释等方面的研究,E-mail:1021516702@qq.com
  • 基金资助:
    中国石油天然气股份有限公司重大科技专项项目(2017E-15)

Evaluation of Fracture Zones and Optimazation of Borehole Tracks in Carbonate Formations Through Information Fusion of Seismic Attributes and Electric Image Well Logging

Wang Lei1, Shen Jinsong1, Zou Rong2, Lin Xuemin2, Xu Zhongxiang2, Su Zhaoyang1, Yang Ping1   

  1. 1. College of Geophysics, China University of Petroleum(Beijing), Beijing 102249, China;
    2. North West Oil Field Corporation, SINOPEC, Urumqi 830011, China
  • Received:2020-01-06 Published:2021-04-06
  • Supported by:
    Supported by the Major Science and Technology Special Project of China National Petroleum Corporation (2017E-15)

摘要: 针对新疆某工区强非均质性岩溶缝洞型碳酸盐岩储层,提出了一种基于地震多属性优化与电成像测井信息融合的碳酸盐岩储层缝洞带识别评价与钻井轨迹优化设计方法。首先,利用相干体、蚂蚁体等多种地震属性与张量约束的稀疏脉冲反演结果综合实现缝洞发育带空间分布预测与雕刻,确定可能油气圈闭的分布范围;然后,基于数学形态学滤波方法,由电成像测井资料自动拾取井壁的裂缝和溶蚀孔洞分布,统计井壁裂缝倾向和倾角;再次,用工区内钻孔多臂井径资料计算的井筒崩落信息与电成像资料拾取的诱导缝信息预测工区的最大和最小主应力方向;最后,融合地震属性与电成像测井信息评价的缝洞分布结果,预测工区内走滑断裂带的最大主应力方向以NE—SW为主,局部为NW—SE,且以中高角度为主的裂缝走向与主应力近乎平行。采用预测主应力分布方法实现了沿NW—SE方向的大斜度井与水平井优化设计,钻遇了大规模优质储集体,获得了稳定油流,并以此为基础在周围打井若干口,极大地降低了深层勘探的钻井风险。

关键词: 岩溶缝洞型碳酸盐岩储层, 地震属性, 电成像测井, 缝洞发育带评价, 井轨迹优化

Abstract: Strong heterogeneity is a problem in the exploration in fracture and vug zones of carbonate formations in the Xinjiang oil work region. In this study, we developed a method based on information fusion of seismic multi-attributes optimized and electric image well logging, then applied it to identify and evaluate the fracture and vug zones existed in carbonate formations,and further to optimize the borehole tracks in carbonate reservoirs. First, we predicted and sculptured the spatial distribution of fractures and vugs by using the information derived from the multiple seismic attributes of coherence, ant tracking, and others in combination with the result of pulse inversion constrained by dip vectors to determine the scope of the potential hydrocarbon trap; Second, the orientation and dip of the fractures and the scattering of the vugs were statistically estimated through the information automatically picked up from the borehole electric images by means of mathematical morphology filtering; Third, the orientations of maximum and minimum stresses in the formations were estimated through the information of borehole collapse deduced from the multi-arm dipmeter logs and the drill bit induced fractures extracted from the electric image well logs; Furthermore, the results of fracture distribution and vug scattering were obtained through information fusion of multiple seismic attributes and electric images, which can be used as an indicator of the orientation of the maximum stress in regional slipping faults. The orientation of the maximum stress in this region is directed to NE-SW, locally directed to NW-SE, and the fractures with medium-high dip are along the maximum stress direction. Based on the predicted maximum stress, the optimization borehole track of deviated borehole and horizontal well was designed along the direction of NW-SE. In application, the drilled boreholes penetrated large scale high quality reservoirs, and obtained stable amount of oil production. Also, by using this method, the risk of deep formation exploration can be significantly decreased.

Key words: fractured and vuggy carbonated reservoirs, seismic attributes, electric imaging well logging, evaluation of the fractured and vuggy zones, optimization of borehole track

中图分类号: 

  • P631
[1] 孙龙德,邹才能,朱如凯,等. 中国深层油气形成、分布与潜力分析[J]. 石油勘探与开发,2013,40(6):641-649. Sun Longde, Zou Caineng,Zhu Rukai, et al. Formation, Distribution and Potential of Deep Hydrocarbon Resources in China[J]. Petroleum Exploration and Development, 2013, 40(6):641-649.
[2] 焦方正. 塔里木盆地深层碳酸盐岩缝洞型油藏体积开发实践与认识[J]. 石油勘探与开发,2019,46(3):552-558. Jiao Fangzheng. Practice and Knowledge of Volumetric Development of Deep Fracture-Vuggy Carbonatereservoirs in Tarim Basin, NW China[J]. Petroleum Exploration and Development,2019,46(3):552-558.
[3] 田军. 塔里木盆地油气勘探成果与勘探方向[J],新疆石油地质,2019,40(1):1-11. Tian Jun. Petroleum Exploration Achievements and Future Targets of Tarim Basin[J]. Xinjiang Petroleum Geology, 2019,40(1):1-11.
[4] Wei Ju, Shen Jian, Qin Yong, et al. In-Situ Stress State in the Linxing Region, Eastern Ordos Basin, China:Implications for Unconventional Gas Exploration and Production[J]. Marine and Petroleum Geology, 2017, 86(1):66-78.
[5] Rajabi M, Tingay M, Heidbach O. The Present-Day State of Tectonic Stress in the Darling Basin, Australia:Implications for Exploration and Production[J]. Marine and Petroleum Geology, 2016, 77(2):776-790.
[6] 漆立新. 塔里木盆地顺托果勒隆起奥陶系碳酸盐岩超深层油气突破及其意义[J].中国石油勘探, 2016, 21(3):38-50. Qi Lixin. Oil and Gas Breakthrough in Ultra-Deep Ordovician Carbonate Formations in Shuntuoguole Uplift, Tarim Basim[J]. China Petroleum Exploration, 2016, 21(3):38-50.
[7] Bahorich M S, Farmer S L. 3-D Seismic Discontinuity for Faults and Stratigraphic Features:The Coherence Cube[J]. The Leading Edge, 1995, 10:1053-1058.
[8] Roberts A. Curvature Attributes and Their Application to 3D Interpreted Horizons[J]. First Break, 2001, 19(2):85-100.
[9] Silva C C, Marcolino C S, Lima F D. Automatic Fault Extraction Using ant Tracking Algorithm in the Marlim South Field, Campos Basin[R]. Houston:SEG Technical Program Expanded Abstracts, 2005:857-860.
[10] Mark R P T, Richard R H, Chris K M, et al. Present-Day Stress and Neotectonics of Brunei:Implications for Petroleum Exploration and Production[R]. AAPG Bulletin, 2009, 93(1):75-100.
[11] Nguyen T T B, Tomochika T, Hoang P S, et al. Present-Day Stress and Pore Pressure Fields in the Cuu Long and Nam Con Son Basins, Offshore Vietnam[J]. Marine and Petroleum Geology, 2007, 24(2):607-615.
[12] 焦方正. 塔里木盆地顺北特深碳酸盐岩断溶体油气藏发现意义与前景[J]. 石油与天然气地质,2018,39(2):207-216. Jiao Fangzheng. Significance and Prospect of Ultra-Deep Carbonate Fault-Karst Reservoirs in Shunbei Area,Tarim Basin[J]. Oil & Gas Geology 2018, 39(2):207-216.
[13] 郑孟林,王毅,金之钧,等. 塔里木盆地叠合演化与油气聚集[J]. 石油与天然气地质,2014,35(6):925-934. Zheng Menglin, Wang Yi, Jin Zhijun, et al. Superimposition,Evolution and Petroleum Accumulation of Tarim Basin[J]. Oil & Gas Geology, 2014,35(6):925-934.
[14] Plumb, Richard A, Stephen H H. Stress-Induced Borehole Elongation:A Comparison Between the Four-Arm Dipmeter and the Borehole Televiewer in the Auburn Geothermal Well[J]. Journal of Geophysical Research:Solid Earth, 1985, 90(B7):5513-5521.
[15] Wang Lei, Su Zhaoyang, Shen Jinsong, et al. Faults and Fractures Detection Using Multiple Seismic Attributes and Sculpture Technique[C]//81st EAGE Conference and Exhibition, London:European Association of Geoscientists & Engineers, 2019.
[16] Marfurt, Kurt J. Seismic Attributes as the Framework for Data Integration Throughout the Oilfield Life Cycle[R]. Anaheim, California:Society of Exploration Geophysicists, 2018.
[17] Abdulmajid L, Suhail A, Mohamed D, et al. Fault Detection Using Seismic Attributes and Visual Saliency[C]. SEG Technical Program Expanded Abstracts, Dallas, Texas:Society of Exploration Geophysicists, 2016, 1939-1943.
[18] Recht B. A Simpler Approach to Matrix Completion[J]. Journal of Machine Learning Research, 2011, 12(11):3413-3430.
[19] Cai Jianfeng, Candes E J, Shen Zuowei. A Singular Value Thresholding Algorithm for Matrix Completion Export[J]. Society for Industrial and Applied Mathematics, 2008, 20(4):1956-1982.
[20] Li Chuang, Huang Jianping, Li Zhenchun, et al. Regularized Least-Squares Migration of Simultaneous-Source Seismic Data with Adaptive Singular Spectrum Analysis[J]. Petroleum Science, 2017, 14(1):61-74.
[21] 李振苓, 沈金松, 李思,等. 成像测井电导率图像空白带奇异谱插值和缝洞孔隙度分离方法[J]. 测井技术, 2017, 41(1):33-40. Li Zhenling,Shen Jinsong,Li Si, et al. Singular Spectral Interpolation of Blank Strips in Formation Micoro-Scanner Conductivity Image and Separation of Porosity Between Fracture and Karst Cave[J]. Well Logging Technology, 2017, 41(1):33-40.
[22] 李振苓,沈金松,李曦宁,等. 用形态学滤波从电导率图像中提取缝洞孔隙度谱[J].吉林大学学报(地球科学版), 2017, 47(4):1295-1307. Li Zhenling, Shen Jinsong, Li Xining, et al. Estimating Porosity Spectrum of Fractureand Karst Cave from Conductivity Image by Morphological Filtering[J]. Journal of Jilin University (Earth Science Edition), 2017, 47(4):1295-1307.
[23] Otsu N. A Threshold Selection Method from Gray-Level Histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1):62-66.
[24] Rafael C G, Richard E W. Digital Image Processing[M]. 2nd ed. New Jersey:Reading, Mass, Addison-Wesley Publishing Co, Inc. 1987.
[25] Niblack W. An Introduction to Digital Image Processing[M]. Denmark:Strandberg Publishing Company Birkeroed, 1985.
[26] Al-Shammaa A A M, Mohamed R. Extraction of Connected Components Skin Pemphigus Diseases Image Edge Detection by Morphological Operations[J]. International Journal of Computer Applications, 2012, 46(18):7-13.
[27] Drapeau J, Géraud T, Coustaty M, et al. Extraction of Ancient Map Contents Using Trees of Connected Components[C]//International Workshop on Graphics Recognition. Berlin:Springer, 2017:115-130.
[28] Jolliffe I T. Principal Component Analysis[M]. New York:Springer, 2002.
[29] Saporta G, Niang N. Principal Component Analysis:Application to Statistical Process Control[M]//Govaert G. London:John Wiley & Sons, 2009:1-23.
[30] Abdi H, Williams L J. Principal Component Analysis[J]. Wiley Interdisciplinary Reviews:Computational Statistics, 2010, 2(4):433-459.
[31] 马乃拜,金圣林,杨瑞召,等. 塔里木盆地顺北地区断溶体地震反射特征与识别[J]. 石油地球物理勘探, 2019, 54(2):398-403. Ma Naibai, Jin Shenglin, Yang Ruizhao, et al. Seismic Response Characteristics and Identification of Fault-Karst Reservoir in Shunbei Area, Tarim Basin[J]. Oil Geophysical Prospecting, 2019, 54(2):398-403.
[32] Farran H, Harris J, Al Jabri S H, et al. An Integrated Approach for Evaluating and Characterising Horizontal Well Inflow and Productivity in Heterogeneous Carbonate Reservoirs[C]//International Petroleum Technology Conference. International Petroleum Technology Conference, Doha:American Association of Petroleum Geologists, 2005.
[1] 潘保芝, 刘文斌, 张丽华, 郭宇航, 阿茹罕. 一种提高储层裂缝识别准确度的方法[J]. 吉林大学学报(地球科学版), 2018, 48(1): 298-306.
[2] 李振苓, 沈金松, 李曦宁, 王磊, 淡伟宁, 郭森, 朱忠民, 于仁江. 用形态学滤波从电导率图像中提取缝洞孔隙度谱[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1295-1307.
[3] 张新培, 于雪峰. 利用地球物理信息描述太古宇潜山有效储集体[J]. 吉林大学学报(地球科学版), 2016, 46(1): 270-278.
[4] 乐友喜,黄健良,张阳,周磊,张玉明,陈孔全. 地质模型约束下的地震储层预测技术及其在梨树断陷中的应用[J]. 吉林大学学报(地球科学版), 2013, 43(2): 632-640.
[5] 邹新宁,孙 卫,张盟勃,万玉君. 地震属性分析在岩性气藏描述中的应用[J]. J4, 2006, 36(02): 289-0294.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!