吉林大学学报(地球科学版) ›› 2018, Vol. 48 ›› Issue (1): 298-306.doi: 10.13278/j.cnki.jjuese.20160343

• 地球探测与信息技术 • 上一篇    下一篇

一种提高储层裂缝识别准确度的方法

潘保芝, 刘文斌, 张丽华, 郭宇航, 阿茹罕   

  1. 吉林大学地球探测科学与技术学院, 长春 130026
  • 收稿日期:2017-11-28 出版日期:2018-01-26 发布日期:2018-01-26
  • 作者简介:潘保芝(1962),女,教授,博士,博士生导师,主要从事岩石物理教学和研究工作,E-mail:panbaozhi@jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(41174096);国家“十二五”重大科技专项(2011ZX05040-002)

A Method for Improving Accuracy of Reservoir Fracture Identification

Pan Baozhi, Liu Wenbin, Zhang Lihua, Guo Yuhang, Aruhan   

  1. College of GeoExploration Science and Technology, Jilin University, Changchun 130026, China
  • Received:2017-11-28 Online:2018-01-26 Published:2018-01-26
  • Supported by:
    Supported by National Nature Science Foundation(41174096) and the 12th Five-Year Major Projects(2011ZX05040-002)

摘要: 油田勘探开发中,储层裂缝的高效、准确识别一直是一个难题。常规测井裂缝识别方法方便但准确度低,电成像测井裂缝识别方法纵向分辨率高、识别准确但人工识别繁琐。为了解决常规和电成像测井裂缝识别方法各自缺点带来的问题,本文提出了一种既高效又准确的储层有效裂缝识别方法。该方法以裂缝在电成像测井上的响应特征为依据,选取裂缝层段为样本,构建常规测井裂缝综合识别因子Y1和电成像测井裂缝识别因子Y2,将两因子结合构建储层裂缝识别因子Y3。利用Y3识别裂缝,采样点间隔为0.002 54 m,远小于常规测井的0.125 m,比常规测井识别裂缝准确度高;自动拾取裂缝效率远高于繁琐的人工识别,比电成像测井识别裂缝省时省力。将该方法应用到王府地区火山岩储层裂缝识别中可快速准确地识别储层裂缝,准确率达到80%左右,对其他类型储层裂缝研究有一定的借鉴意义。

关键词: 裂缝, 综合识别, 电成像测井, 常规测井, 火山岩储层

Abstract: In the exploration and development of oil field, it is always a difficult problem to accurately and efficiently identify fractures in reservoirs. The conventional well log is easy to identify the fracture but the accuracy is low. The imaging log has high resolution and high accuracy but complicated for artificial identification. In order to conquer the shortcomings of conventional and electrical imaging well log fracture identification, this paper presents an efficient and accurate method for reservoir fracture identification. The authors selected fracture samples based on the response of fractures in electric imaging log to establish conventional log comprehensive factor Y1 and imaging log factor Y2 for fracture recognition, then combined Y1 and Y2 to build reservoir fracture identification factor Y3. Y3 is used to identify fractures, which is more accurate than conventional log with the sampling interval 0.002 54 m which is much less than the conventional log interval 0.125 m. Compared with the electric imaging log, it can not only save time and labor but also increase the efficiency of the automatic fracture pick up. The method was applied to the identification of volcanic reservoir fractures in Wangfu area, which quickly and accurately identified the reservoir fractures, and its accuracy is about 80%. This can be a reference for the identification of other types of reservoir fractures.

Key words: fracture, comprehensive identification, imaging logging, conventional logging, volcanic reservoir

中图分类号: 

  • P631.8
[1] 陈树民,姜传金,刘立,等. 松辽盆地徐家围子断陷火山岩裂缝形成机理[J]. 吉林大学学报(地球科学版), 2014, 46(6): 1816-1826. Chen Shumin, Jiang Chuanjin, Liu Li, et al. Fracture Formation Mechanism of Volcanic Rocks in Xujiaweizi Fault Depression of Songliao Basin[J]. Journal of Jilin University (Earth Science Edition), 2014, 46(6): 1816-1826.
[2] 张家政,崔金栋,杨荣国. 准噶尔盆地红山嘴油田石炭系火山岩裂缝储层特征[J]. 吉林大学学报(地球科学版), 2012, 42(6): 1629-1637. Zhang Jiazheng, Cui Jindong, Yang Rongguo. Features of the Carboniferous Volcanic Fracture Reserviors in Hongshanzui Oilfield, Junggar Basin[J]. Journal of Jilin University (Earth Science Edition), 2012, 42(6): 1629-1637.
[3] 蒲静,秦启荣. 油气储层裂缝预测方法综述[J]. 特种油气藏,2008,15(3):9-13. Pu Jing, Qin Qirong. An Overview of Fracture Prediction Methods for Oil and Gas Reservoirs[J]. Special Oil and Gas Reservoirs, 2008, 15(3): 9-13.
[4] 苏培东,秦启荣,黄润秋. 储层裂缝预测研究现状与展望[J]. 西南石油学院学报,2005,27(5):14-17. Su Peidong, Qin Qirong, Huang Runqiu. Prospects and Status for the Study on Reservoir Fractures[J]. Journal of Southwest Petroleum Institute, 2005, 27(5): 14-17.
[5] 潘保芝,张丽华,单刚义. 裂缝和孔洞型储层孔隙模型的理论进展[J]. 地球物理学进展, 2006, 21(4): 1232-1237. Pan Baozhi, Zhang Lihua, Shan Gangyi. Progress in Porosity Model for Fractured and Vuggy Reservoirs[J]. Progress in Geophysics, 2006, 21(4): 1232-1237.
[6] 何雨丹,魏春光. 裂缝型油气藏勘探评价面临的挑战及发展方向[J]. 地球物理学进展,2007,22(2):537-543. He Yudan, Wei Chunguang. The Present Situation and Research Direction of Evaluation Methods in Fracture Type Reservoir[J]. Progress in Geophysics, 2007, 22(2): 537-543.
[7] 李健伟,王磊,陈利雯. 碳酸盐岩储层裂缝识别技术研究[J]. 工程地球物理学报, 2013, 10(6): 885-890. Li Jianwei, Wang Lei, Chen Liwen. Research of Fracture Identidication Technology on Carbonate Reservoir[J]. Chinese Journal of Engineering Geophysics, 2013, 10(6): 885-890.
[8] Feng Cuiju, Yan Weilin. Fracture Qualitative Iden-tification Using Conventional Logging Data[J]. Applied Mechanics and Materials, 2013, 316/317: 822-825.
[9] Saboorian-Jooybari H, Dejam M, Chen Z, et al. Comprehensive Evaluation of Fracture Parameters by Dual Laterolog Data[J]. Journal of Applied Geophysics, 2016, 131(6): 214-221.
[10] 罗利,胡培毅,周政英. 碳酸盐岩裂缝测井识别方法[J]. 石油学报, 2001, 22(3): 32-35. Luo Li, Hu Peiyi, Zhou Zhengying. Log Identification for Fracture in Carbonate[J]. Acta Petrolei Sinica, 2001, 22(3): 32-35.
[11] 张文静.小波多尺度分析方法识别储层裂缝[D]. 青岛:中国石油大学,2009. Zhang Wenjing. Identify Fracturewith Wavelet Multi-Scale Analysis Methodp[D]. Qingdao: China University of Petroleum, 2019.
[12] 张晓峰,潘保芝. 二维小波变换在成像测井识别裂缝中的应用研究[J]. 石油地球物理勘探, 2012, 47(1): 173-176. Zhang Xiaofeng, Pan Baozhi. Two-Dimensional Wavelet Transform to Identify Fractures in Imaging Logging[J]. Oil Geophysical Prospecting, 2012, 47(1): 173-176.
[13] Shen Huilin, Gao Songyang. Research on Fracture Identification Based on BP Neural Network[J]. Fault-Block Oil & Gas Field, 2007, 14(2): 60-62.
[14] 蒋健美. 川西DY地区须家河组裂缝识别方法研究[D].成都:成都理工大学, 2013. Jiang Jianmei. The Research on the Fracture Identification of Xujiahe Formation in DY Region in Western Sichuan[D]. Chengdu: Chengdu University of Techniques, 2013.
[15] 王永刚. 埕北地区碳酸盐岩储层裂缝识别与定量解释[J]. 新疆石油科技,2012,22(2):35-38. Wang Yonggang. Cheng-Bei Carbonate Reservoir Fracture Identification and Quantitative Interpretation[J]. Xinjiang Petroleum Science & Technology, 2012,22(2): 35-38.
[16] Yong Chaoxue, Lin Songcheng, Jian Yemou, et al. A New Fracture Prediction Method by Combining Genetic Algorithm with Neural Network in Low-Permeability Reservoirs[J]. Journal of Petroleum Science and Engineering, 2014, 121(2): 159-166.
[17] 孙建孟,刘坤,王艳,等. 泥页岩储层裂缝识别与有效性评价研究[J]. 测井技术, 2015, 39(5): 611-616. Sun Jianmeng, Liu Kun, Wang Yan, et al. Fracture Identification and Effectiveness Evaluation Research of Shale Reservoir[J]. Well Logging Technology, 2015, 39(5): 611-616.
[18] 戴俊生,汪必峰. 综合方法识别和预测储层裂缝[J]. 油气地质与采收率,2003,10(1):1-2. Dai Junsheng, Wang Bifeng. Integrated Approach of Identifying and Predicting Fracture in Reservoir[J]. Petroleum Geology and Recovery Efficiency, 2003, 10(1): 1-2.
[19] 杨绪海,张晓春. 利用声成像测井数据实现岩石裂缝特征的自动识别[J]. 中国海上油气地质, 2000,12(6): 64-66. Yang Xuhai, Zhang Xiaochun. Automatic Identification of Rock Fractures Using Acoustic Image Logging[J]. China Offshore Oil and Gas, 2000, 12(6): 64-66.
[20] 陆敬安,伍忠良,关晓春,等. 成像测井中的裂缝自动识别方法[J]. 测井技术, 2004,28(2):115-117. Lu Jing'an, Wu Zhongliang, Guan Xiaochun, et al. Automatically Extract Fracture Parameters from Resistivity Images by Using Hough Transform[J]. WellLogging Technology, 2004, 28(2): 115-117.
[21] 赖富强.电成像测井处理及解释方法研究[D]. 青岛:中国石油大学,2011. Lai Fuqiang. Micro-Resistivity Image Logging Processing and Interpretation Methods Research[D]. Qingdao: China University of Petroleum, 2011.
[22] 王敏. 基于二维成像测井的裂缝性储层测井评价方法研究[D]. 青岛:中国石油大学,2010. Wang Min. Fractured Reservoir EvaluationUsing 2-D Imaging Logging Data[D]. Qingdao: China University of Petroleum, 2010.
[23] 张程恩. 成像测井裂缝识别与提取及裂缝参数计算方法研究[D].长春:吉林大学, 2012. Zhang Cheng'en. Study on Fracture Recognition and Exraction Based on Image Log Data Process and Fracture Parameters Caculation[D]. Changchun:Jilin University, 2012.
[24] Westermark R V, Scholes P. Fracture Identification in Openhole from a Cement Evaluation Tool[C]// Ventura. SPE California Regional Meeting. California: Society of Petroleum Engineers, 1987: 81-88.
[25] 李舟波,潘保芝,范晓敏. 地球物理测井数据处理与综合解释[M].北京:地质出版社,2008:150-151. Li Zhoubo, Pan Baozhi, Fan Xiaomin. Data Processing and Comprehensive Interpretation of Geophysical Logging Data[M]. Beijing: Geological Publishing House, 2008: 150-151.
[26] 张宇山. 多元线性回归分析的实例研究[J]. 科技信息,2009,9(9): 54-56. Zhang Yushan. A Case Study of Multiple Linear Regression Analysis[J]. Science & Technology Information, 2009, 9(9): 54-56.
[1] 邓馨卉, 刘财, 郭智奇, 刘喜武, 刘宇巍. 济阳坳陷罗家地区各向异性页岩储层全波场地震响应模拟及分析[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1231-1243.
[2] 张冰, 郭智奇, 徐聪, 刘财, 刘喜武, 刘宇巍. 基于岩石物理模型的页岩储层裂缝属性及各向异性参数反演[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1244-1252.
[3] 刘宗利, 王祝文, 刘菁华, 赵淑琴, 欧伟明. 辽河东部凹陷火山岩相测井响应特征及储集意义[J]. 吉林大学学报(地球科学版), 2018, 48(1): 285-297.
[4] 张焕旭, 陈世加, 路俊刚, 刘超威, 陈娟, 李勇, 徐坤. “膨胀力”作用下致密砂岩储层石油运聚特征[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1341-1351.
[5] 李振苓, 沈金松, 李曦宁, 王磊, 淡伟宁, 郭森, 朱忠民, 于仁江. 用形态学滤波从电导率图像中提取缝洞孔隙度谱[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1295-1307.
[6] 张博为, 付广, 张居和, 胡明, 刘峻桥, 王浩然. 油源断裂转换带裂缝发育及其对油气控制作用——以冀中坳陷文安斜坡议论堡地区沙二段为例[J]. 吉林大学学报(地球科学版), 2017, 47(2): 370-381.
[7] 徐宏杰, 胡宝林, 郑建斌, 刘会虎, 张文永, 郑凯歌. 淮南煤田煤系页岩气储集空间特征及其岩相控制作用[J]. 吉林大学学报(地球科学版), 2017, 47(2): 418-430.
[8] 李永刚. 松南气田火山岩致密储层分类及有利目标潜力评价[J]. 吉林大学学报(地球科学版), 2017, 47(2): 344-354.
[9] 刘敬寿, 戴俊生, 徐珂, 张艺, 丁文龙. 构造裂缝产状演化规律表征方法及其应用[J]. 吉林大学学报(地球科学版), 2017, 47(1): 84-94.
[10] 李博南, 刘财, 郭智奇. 基于等效介质模型和频变AVO反演的裂缝储层参数估算方法[J]. 吉林大学学报(地球科学版), 2017, 47(1): 234-244.
[11] 巨银娟, 张小莉, 张永庶, 陈琰. 柴达木盆地昆北地区基岩储层裂缝特征[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1660-1671.
[12] 张雨晴, 王晖, 范廷恩, 宋来明, 聂妍, 梁旭, 陈飞. 花岗岩潜山储层裂缝建模表征方法——以渤海花岗岩潜山A油田为例[J]. 吉林大学学报(地球科学版), 2016, 46(5): 1312-1320.
[13] 王璞珺, 缴洋洋, 杨凯凯, 张增宝, 边伟华. 准噶尔盆地火山岩分类研究与应用[J]. 吉林大学学报(地球科学版), 2016, 46(4): 1056-1070.
[14] 刘仁强, 段永刚, 谭锋奇, 刘红现, 屈怀林. 用试井资料研究低渗透裂缝性油藏渗流模式及演化特征——以准噶尔盆地火烧山油田为例[J]. 吉林大学学报(地球科学版), 2016, 46(2): 610-616.
[15] 何辉, 孔垂显, 蒋庆平, 邓西里, 肖芳伟, 李顺明. 准噶尔盆地西北缘二叠系火山岩储层裂缝发育特征及分布预测—以金龙2井区佳木河组为例[J]. 吉林大学学报(地球科学版), 2015, 45(5): 1278-1288.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!