吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (3): 783-791.doi: 10.13278/j.cnki.jjuese.20200116

• 地质与资源 • 上一篇    下一篇

XRF半定量分析技术在矿石光片鉴定中的应用

范鹏飞1,2, 邓述培3, 邹源4, 刘朝2, 翟宏宇1, 周冬冬5   

  1. 1. 东华理工大学地球科学学院, 南昌 330006;
    2. 核工业二三○研究所, 长沙 410007;
    3. 湖南省有色地质勘查研究院测试中心, 长沙 410000;
    4. 湖南省地质调查院, 长沙 410116;
    5. 中国建筑材料工业地质勘查中心湖南总队, 长沙 410000
  • 收稿日期:2020-05-07 出版日期:2021-05-26 发布日期:2021-06-07
  • 作者简介:范鹏飞(1989-),男,硕士研究生,工程师,主要从事岩矿分析鉴定、岩矿测试等工作,E-mail:1935163143@qq.com
  • 基金资助:
    中国地质调查局项目(DD20190379-17);中国核工业集团有限公司项目(地LCEQ-KYWX-01);中国核工业地质局项目(201918)

Application of XRF Semi-Quantitative Analysis Technology in Identifying Ore on Polished Section

Fan Pengfei1,2, Deng Shupei3, Zou Yuan4, Liu Chao2, Zhai Hongyu1, Zhou Dongdong5   

  1. 1. School of Earth Science, East China University of Technology, Nanchang 330006, China;
    2. Nuclear Research Institue of No. 230, Changsha 410007, China;
    3. Hunan Nonferrous Metal Exploration and Research Institute Testing Center, Changsha 410000, China;
    4. Hunan Institue of Geology Survey, Changsha 410116, China;
    5. Hunan Branch of China National Geological Exploration Center of Building Materials Industry, Changsha 410000, China
  • Received:2020-05-07 Online:2021-05-26 Published:2021-06-07
  • Supported by:
    Supported by the Project of China Geological Survey (DD20190379-17),the Project of China National Nuclear Corporation (Geology LCEQ-KYWX-01) and the Project of China Nuclear Geology (201918)

摘要: 偏光显微镜反光镜下鉴定金属矿物是最常用、最快捷有效的方法,然而鉴定结果容易受到鉴定者主观因素或磨片情况的影响。为了更快速、准确地在反光镜下鉴定矿物,利用XRF半定量分析技术快速、无损、前处理简单等特点,以及磨平抛光的矿石矿物在半定量分析过程中能较好地避免楔入效应和阴影效应的有利因素,采取了先用XRF半定量分析测得的结果去反推矿物,再在显微镜下鉴定矿物的方法。以多金属硫化物矿石、含铀多金属矿石及含微量铀的矿石样品为例进行鉴定,结果表明,在鉴定前知道光片上的元素及其质量分数,通过地球化学方法和经验法反推矿物,结合显微镜观察需要鉴定的矿物,可有效避免忽略掉透明/半透明矿物(锡石)、小粒径矿物(沥青铀矿)、易混淆矿物(铀黑),提高光片鉴定工作的效率和准确性。

关键词: XRF, 半定量分析, 矿石光片, 鉴定

Abstract: The identification of minerals under the reflective polarizing microscope is the most commonly used, quickest, and effective method. However, the identification results are easily affected by personal subjective factors and conditions of the polished section. If we know the elements in the polished section in advance and relative content, we can conjecture the minerals based on geochemical methods and experiences, and the composition data combined with microscope observation can greatly improve the efficiency and accuracy of polished section identification. XRF semi-quantitative analysis technology has the characteristics of fast, non-destructive and simple in sample preparation. In the process of semi-quantitative analysis of the polished section, wedging and shadow effects can be avoided; although the gangue minerals such as silicate minerals cannot be avoided, and there may be even some other influencing factors such as chemical bond drift, the identification of gangue minerals is not very important. Using the results of XRF semi-quantitative analysis to conjecture the minerals, and then identify the minerals under a microscope, the efficiency and accuracy of polished section identification can be improved significantly. In order to illustrate the specific application of XRF semi-quantitative analysis technology in identification of polished section, several examples of polished section identification of polymetallic sulfide ores and uranium-containing polymetallic ores are listed.

Key words: XRF, semi-quantitative analysis, ore polished section, identification

中图分类号: 

  • P588.12
[1] 许乃岑, 沈加林, 张静. X射线衍射-X射线荧光光谱-电子探针等分析测试技术在玄武岩矿物鉴定中的应用[J]. 岩矿测试, 2015, 34(1): 75-81. Xu Naicen, Shen Jialin, Zhang Jing. Application of X-Ray Diffraction, X-Ray Fluorescence Spectrometry and Electron Microprobe in the Identification of Basalt[J]. Rock and Mineral Testing, 2015, 34(1): 75-81.
[2] Rousseau M. Fundamental Algorithm Between Concentration and Intensity in XRF Analysis[J]. X-Ray Spectrometry, 1984, 13(3): 115-120.
[3] Salmon M L. The Effects of Operating Variables in the Application of Multielement Calibration Systems for Fluorescent X-Ray Spectrographic Analyses of Mineral Samples[J]. Advances in X-Ray Analysis, 1960, 4: 433-456.
[4] Salmon M L. A Simple Multielement-Calibration System for Analysis of Minor and Major Elements in Minerals by Fluorescent X-Ray Spectrography[J]. Advances in X-Ray Analysis, 1961, 5: 389-404.
[5] Broll N, Caussin P, Peter M. Matrix Correction in X-Ray Fluorescence Analysis by the Effective Co-Efficient Method[J]. X-Ray Spectrom, 1992, 21(1): 43-49.
[6] Sherman J. The Theoretical Derivation of Fluorescent X-Ray Intensities From Mixture[J]. Spectrochimica Acta, 1955, 7: 283-306.
[7] 朱志秀, 冯健, 李晨, 等. X射线荧光光谱无标样分析技术在出入境矿产品检验中的应用[J]. 理化检验:化学分册, 2009, 45(7): 832-835. Zhu Zhixiu, Feng Jian, Li Chen, et al. Application of X-Aay Fluorescence Spectroscopy Standard-Free Analysis Technology in the Inspection of Entry and Exit Mineral Products[J]. Physical Testing and Chemical Analysis:Chemistry Volume, 2009, 45(7): 832-835.
[8] 张广玉, 赵世煌, 邓晃, 等. 手持式X射线荧光光谱多点测试技术在地质岩心和岩石标本预研究中的应用[J]. 岩矿测试, 2017, 36(5): 501-509. Zhang Guangyu, Zhao Shihuang, Deng Huang, et al. Application of Handheld X-Ray Fluorescence Spectrometry Multi-Point Measurement Mechnology in the Pre-Research of Geological Cores and Rock Specimens[J]. Rock and Mineral Testing, 2017, 36(5): 501-509.
[9] 岩矿鉴定技术规范:第3部分:矿石光片制样:DZ/T 0275.3—2015[S]. 北京: 中国标准出版社, 2015. Specification Identification of Rock and Mineral:Part 3:Ore Polished Section Preparation:DZ/T 0275.3-2015[S]. Beijing: Standards Press of China, 2015.
[10] 高新华, 宋武元, 邓赛文, 等. 实用X射线光谱分析技术[M]. 北京: 化学工业出版社, 2016: 170-171. Gao Xinhua, Song Wuyuan, Deng Saiwen, et al. Practical X-Ray Spectroscopy Analysis Technology[M]. Beijing: Chemical Industry Press, 2016: 170-171.
[11] 韩吟文, 马振东, 张宏飞, 等. 地球化学[M]. 北京: 地质出版社, 2003: 86-91. Han Yinwen, Ma Zhendong, Zhang Hongfei, et al. Geochemistry[M]. Beijing: Geological Publishing House, 2003: 86-91.
[12] 邵帅. 广西河池市大象岭铅锌矿地质特征及认识[J]. 矿产与地质, 2017, 31(4): 695-698. Shao Shuai. Geological Characteristics and Understanding of Daxiangling Lead-Zinc Deposit in Hechi City, Guangxi[J]. Mineral Resources and Geology, 2017, 31(4): 695-698.
[13] 谈树成, 郭翔宇, 何小虎, 等. 云南个旧锡多金属矿床锡石矿物化学特征及其成因意义[J]. 吉林大学学报(地球科学版), 2018, 48(3): 736-753. Tan Shucheng, Guo Xiangyu, He Xiaohu, et al. The Mineral Chemical Characteristics and Genesis of Cassiterite from the Gejiu Tin-Polymetallic Deposit in Yunnan Province[J]. Journal of Jilin University (Earth Science Edition), 2018, 48(3): 736-753.
[14] 彭渤洋, 陈友良, 刘堃, 等. 攀枝花大田505铀矿区混合岩主量元素特征及其意义[J]. 四川冶金, 2017, 39(6): 32-38. Peng Boyang, Chen Youliang, Liu Kun, et al. Characteristics and Significance of Major Elements of Mixed Rocks in Datian 505 Uranium Mining Area, Panzhihua[J]. Sichuan Metallurgy, 2017, 39(6): 32-38.
[15] 张万良. 鹿井铀矿田成矿地质特征及控矿因素[J]. 铀矿地质, 2017, 27(2): 81-87. Zhang Wanliang. Metallogenic Geological Characteristics and Ore-Controlling Factors of Lujing Uranium Ore Field[J]. Uranium Geology, 2017, 27(2): 81-87.
[16] 孙宏伟,王杰,任军平, 等. 中非卢菲里安地区铀矿化特征与资源潜力分析[J]. 吉林大学学报(地球科学版), 2020, 50(6): 1660-1674. Sun Hongwei, Wang Jie, Ren Junping, et al. Analysis of Uranium Mineralization Characteristics and Resource Potential in the Lufirian Region of Central Africa[J]. Journal of Jilin University (Earth Science Edition), 2020, 50(6): 1660-1674.
[17] 张金带. 中国北方中新生代沉积盆地铀矿勘查进展和展望[J]. 铀矿地质, 2012, 28(4): 193-198. Zhang Jindai. Progress and Prospects of Uranium Exploration in Mesozoic and Cenozoic Sedimentary Basins in Northern China[J]. Uranium Geology, 2012, 28(4): 193-198.
[1] 杨悦锁, 雷玉德, 杜新强, 韩建超, 曹玉清. 当地下水邂逅DNA:石油类有机污染及其生物降解[J]. J4, 2012, 42(5): 1434-1445.
[2] 路杨, 刘相国, 杨朔, 宁波, 张晓英, 郝东云. 地下水中锰离子氧化细菌的分离与筛选鉴定[J]. J4, 2009, 39(6): 1117-1121.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 高松, 宋莹, 王琳,蒋步新. 水体中秋兰姆特效降解菌的筛选及其降解性能研究[J]. J4, 2006, 36(03): 455 -457 .
[2] 李宪洲,刘 研,刘丽华,宁维坤,范 海. 高岭土/肼插层材料的制备与表征[J]. J4, 2006, 36(04): 659 -662 .
[3] 卢双舫,李吉君,薛海涛,徐立恒. 油成甲烷碳同位素分馏的化学动力学及其初步应用[J]. J4, 2006, 36(05): 825 -829 .
[4] 丁志宏,冯平,毛慧慧. 考虑径流年内分布影响的丰枯划分方法及其应用[J]. J4, 2009, 39(2): 276 -0280 .
[5] 张凤君,李 卿,马玖彤,于广菊. 膜蒸馏处理糠醛废水的实验研究[J]. J4, 2006, 36(02): 270 -0273 .
[6] 张原庆, 宋炳忠, 王玉福, 张宁. 鲁西铜石岩体金成矿规律和成矿预测[J]. J4, 2010, 40(6): 1287 -1294 .
[7] 安乐生, 刘贯群, 叶思源, 赵全升, 丁喜桂, 张建伟. 黄河三角洲滨海湿地健康条件评价[J]. J4, 2011, 41(4): 1157 -1165 .
[8] 李松, 汤达祯, 王炜, 许浩, 杨紫, 陈晓智, 崔立伟. 鄯勒油田西山窑组层序地层格架及其油气地质意义[J]. J4, 2011, 41(4): 983 -991 .
[9] 曾玉超, 苏正, 吴能友, 王晓星, 胡剑. 漳州地热田基岩裂隙水系统温度分布特征[J]. J4, 2012, 42(3): 814 -820 .
[10] 何俊,冶雪艳. 基于有机污染物扩散的复合衬垫厚度的概率设计[J]. 吉林大学学报(地球科学版), 2013, 43(1): 228 -234 .