吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (3): 792-803.doi: 10.13278/j.cnki.jjuese.20200318

• 地质工程与环境工程 • 上一篇    下一篇

含水率对分散性土抗剪强度特性影响的微观解释

陈剑平, 刘经, 王清, 韩岩, 王加奇, 李兴华   

  1. 吉林大学建设工程学院, 长春 130026
  • 收稿日期:2020-12-25 出版日期:2021-05-26 发布日期:2021-06-07
  • 通讯作者: 王清(1959—),女,教授,博士生导师,主要从事土体工程地质方面的研究,E-mail:wangqing@jlu.edu.cn E-mail:wangqing@jlu.edu.cn
  • 作者简介:陈剑平(1957—),男,教授,博士生导师,主要从事岩体工程地质方面的研究,E-mail:chenjp@jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(41820104001,41627801);吉林省水利厅资助项目(126002-2020-0001)

Microscopic Interpretation of Water Content Influence on Shear Strength of Dispersive Soil

Chen Jianping, Liu Jing, Wang Qing, Han Yan, Wang Jiaqi, Li Xinghua   

  1. College of Construction Engineering, Jilin University, Changchun 130026, China
  • Received:2020-12-25 Online:2021-05-26 Published:2021-06-07
  • Supported by:
    Support by the National Natural Science Foundation of China (41820104001,41627801) and the Department of Water Resources of Jilin Province (126002-2020-0001)

摘要: 分散性土作为一种水敏性特殊土,具有遇水失稳解体的特性,该特性对水利和岩土工程极为不利。为了加强分散性土力学强度及力学强度影响机理方面的研究,以吉林西部乾安地区分散性土为研究对象,通过直接剪切试验和扫描电子显微镜(SEM)分别对不同含水率(5.0%~24.0%)的重塑试样的抗剪强度(垂直压力50、100、200和300 kPa)和微观结构进行测试与观察。结果表明:1)含水率的增加会导致剪应力-剪切位移曲线从应变软化向应变硬化转变,过渡区间为8.0%~11.0%,转变优先出现在高垂直压力下。2)随含水率的增加,内聚力总体呈下降趋势,拐点含水率分别为17.0%和23.0%,内摩擦角则表现出减小—增大—减小的规律,拐点含水率分别为11.0%和17.0%;内聚力的变化受盐分赋存状态和含水率共同作用,内摩擦角的变化受内聚力和黏滞阻力共同影响。3)在Na+作用下,随含水率的升高,黏粒结合水膜迅速增厚,结构单元体逐渐解体,颗粒的胶结作用逐渐减弱;结构单元体由大颗粒向小颗粒转变,土体孔隙由大孔隙向小孔隙发展。4) SEM图像定量分析提取到的土颗粒结构单元体形态参数与抗剪强度表现出良好的相关性(显著性水平p<0.05),表明抗剪强度的降低是含水率引起分散性土微观结构单元体变化的宏观表现。

关键词: 分散性土, 含水率, 抗剪强度, 微观结构

Abstract: As a special water-sensitive soil, dispersive soil has the characteristics of collapse and disintegration when encountering water, which isnot conducive to water conservancy projects and geotechnical engineering. In order to enhance the research on the mechanical strength as well as the influential mechanism of dispersive soil, in this paper, the dispersive soil in Qian’an area in the west of Jilin Province was taken as the research object,and the remolded soil samples with different water contents (5.0%-24.0%) were tested and observed respectively by direct shear test (under vertical pressures including 50, 100, 200 and 300 kPa) and scanning electronic microscope (SEM). The results show that:1) The increase of water content led to the transformation of shear stress-shear displacement curve from strain-softening to strain-hardening, the corresponding water content in the transition zone was between 8.0% and 11.0%, and the strain-hardening occurred preferentially under higher vertical pressures. 2) With the increase of water content, the cohesion decreased as a whole with the inflection points at 17.0% and 23.0% of water content, while the internal friction angle showed a decreasing-increasing-decreasing pattern, with the inflection points at 11.0% and 17.0% of water content; It is considered that the cohesion change is affected by both salt phase state and water content, while the change of internal friction angle is affected by cohesion and viscous resistance. 3) Affected by Na+, with the increase of water content, the clay bound water film thickened rapidly, the structural units disintegrated gradually, the cementation of some particles weakened gradually, the structural units evolved from large particles into smaller ones, and the size of pores reduced. 4) A good correlation exists between the soil shear strength and main morphological parameters of the soil microstructure units obtained from the quantitative analyses on the SEM images (p<0.05), indicating that the decrease of shear strength is the macroscopic manifestation of the changes in the soil microstructure units induced by water content due to soil dispersity.

Key words: dispersive soil, water content, shear strength, microstructure

中图分类号: 

  • TU411
[1] Vakili A H, Kaedi M, Mokhberi M, et al. Treatment of Highly Dispersive Clay by Lignosulfonate Addition and Electroosmosis Application[J]. Applied Clay Science, 2018, 152: 1-8.
[2] Goodarzi A R, Salimi M.Stabilization Treatment of a Dispersive Clayey Soil Using Granulated Blast Furnace Slag and Basic Oxygen Furnace Slag[J]. Applied Clay Science, 2015, 108: 61-69.
[3] Fan H H,Kong L W.Empirical Equation for Evaluating the Dispersivity of Cohesive Soil[J]. Canadian Geotechnical Journal, 2013, 50(9): 989-994.
[4] 樊恒辉, 张路, 杨秀娟, 等.分散性土及工程应用的研究进展[J]. 水利与建筑工程学报, 2019, 17(3): 10-21. Fan Henghui, Zhang Lu, Yang Xiujuan, et al. Advances in Research and Engineering Applicaitons of Dispersive Soil[J]. Journal of Water Resources and Architectural Engineering, 2019, 17(3): 10-21.
[5] Bell F G, Walker D J H. A Further Examination of the Nature of Dispersive Soils in Natal, South Africa[J]. Quarterly Journal of Engineering Geology and Hydrogeology, 2000, 33: 187-199.
[6] Gutiérrez F, Desir G, Gutiérrez M.Causes of the Catastrophic Failure of an Earth Dam Built on Gypsiferous Alluvium and Dispersive Clays (Altorricón, Huesca Province, NE Spain)[J]. Environmental Geology, 2003, 43(7): 842-851.
[7] Marchuk A, Rengasamy P.Clay Behaviour in Suspension is Related to the Ionicity of Clay-Cation Bonds[J]. Applied Clay Science, 2011, 53(4): 754-759.
[8] SavaşH, Türköz M, Seyrek E, et al. Comparison of the Effect of Using Class C and F Fly Ash on the Stabilization of Dispersive Soils[J]. Arabian Journal of Geosciences, 2018, 11: 612.
[9] Vakili A H, Selamat M R B, Mohajeri P,et al. A Critical Review on Filter Design Criteria for Dispersive Base Soils[J]. Geotechnical and Geological Engineering, 2018, 36(4): 1933-1951.
[10] 赵高文, 樊恒辉, 陈华, 等.基于黏性土分散机制的分散性土化学改性研究[J]. 岩土力学, 2013, 34(增刊2): 210-213. Zhao Gaowen, Fan Henghui, Chen Hua, et al. Study of Chemical Modification of Dispersive Clay Based on Mechanism of Dispersivity of Cohesive Soil[J]. Rock and Soil Mechanics, 2013, 34(Sup. 2): 210-213.
[11] Chorom M, Regasamy P, Murray R S. Clay Dispersion as Influenced by pH and Net Particle Charge of Sodic Soils[J]. Australian Journal of Soil Research, 1994, 32(6): 1243.
[12] 赵高文, 樊恒辉, 石美, 等.基于灰色系统及验证试验的黏性土分散机理分析[J]. 岩土工程学报, 2015, 37(增刊2): 186-190. Zhao Gaowen, Fan Henghui, Shi Mei, et al. Dispersion Mechanism of Soils Revealed by Grey System Theory and Verification Tests[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(Sup. 2): 186-190.
[13] 魏迎奇, 温彦锋, 蔡红, 等.分散性黏土鉴定试验的可靠性分析[J]. 中国水利水电科学研究院学报, 2007, 5(3): 186-190. Wei Yingqi, Wen Yanfeng, Cai Hong, et al. Reliability Analysis of Identification Test of Dispersive Clay[J]. Journal of China Institute of Water Resources and Hydropower Research, 2007, 5(3): 186-190.
[14] Shoghi H, Ghazavi M, Ganjian N.The Effects of Chemical Admixtures and Physical Factors on the Treatment of Dispersive Soils[J]. Arabian Journal of Geosciences, 2017, 10: 486.
[15] 于为, 马龙, 王秋丽.新疆玛纳斯河肯斯瓦特水利枢纽防渗土料分散性研究[J]. 土工基础, 2011, 25(3): 77-80,97. Yu Wei, Ma Long, Wang Qiuli. Dispersity Study on Anti-Infiltration Soil of Hydro-Junction of Kenzwat River in Manas, Xinjiang[J]. Soil Engineering and Foundation, 2011, 25(3): 77-80,97.
[16] 赵高文, 樊恒辉, 陈华, 等.蒙脱石对黏性土分散性的影响[J]. 岩土工程学报, 2013, 35(10): 1928-1932. Zhao Gaowen, Fan Henghui, Chen Hua, et al. Influence of Montmorillonite on Dispersivity of Clayey Soils[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(10): 1928-1932.
[17] Moravej S, Habibagahi G, Nikooee E, et al. Stabilization of Dispersive Soils by Means of Biological Calcite Precipitation[J]. Geoderma, 2018,315: 130-137.
[18] 杨玉婳, 唐红, 姚海林, 等.羟基铝改性分散性土的试验研究[J/OL]. 人民黄河, 2020, http://kns.cnki.net/kcms/detail/41.1128.TV.20200518.1324.070.html. Yang Yuhua, Tang Hong, Yao Hailin, et al. Experimental Study on Improvement of Dispersive Soil by Hydroxyl Aluminum[J/OL]. Yellow River, 2020,http://kns.cnki.net/kcms/detail/41.1128.TV.20200518.1324.070.html..
[19] 李兴国, 许仲生.分散性土的试验鉴别和改良[J]. 岩土工程学报, 1989, 11(1): 62-66. Li Xingguo, Xu Zhongsheng. Test Identification and Improvement of Dispersive Soil[J]. Chinese Journal of Geotechnical Engineering, 1989, 11(1): 62-66.
[20] Kertész Á, Gergely J. Gully Erosion in Hungary, Review and Case Study[J]. Procedia-Social and Behavioral Sciences, 2011, 19: 693-701.
[21] Valentin C, Poesen J,Li Y. Gully Erosion: Impacts, Factors and Control[J]. Catena, 2005, 63(2/3): 132-153.
[22] Leonard J, Richard G. Estimation of Runoff Critical Shear Stress for Soil Erosion from Soil Shear Strength[J]. Catena, 2004, 57(3): 233-249.
[23] 唐自强, 党进谦, 樊恒辉, 等.分散性土的抗剪强度特性试验研究[J]. 岩土力学, 2014, 35(2): 435-440. Tang Ziqiang, Dang Jinqian, Fan Henghui, et al. Experimental Research on Shear Strength Characteristics of Dispersive Clay[J]. Rock and Soil Mechanics, 2014, 35(2): 435-440.
[24] 蒋明镜.现代土力学研究的新视野:宏微观土力学[J]. 岩土工程学报, 2019, 41(2): 195-254. Jiang Mingjing. New Paradigm for Modern Soil Mechanics: Geomechanics from Micro to Macro[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(2): 195-254.
[25] Frost J D, Roy N, Chen C C, et al. Quantitative Analysis of Microstructure Properties and Their Influence on Macroscale Response[J]. Ksce Journal of Civil Engineering, 2019, 23(9): 3777-3792.
[26] 常锦, 杨和平, 肖杰, 等.酸雨入渗对膨胀土抗剪强度的影响及微观试验研究[J]. 中南大学学报(自然科学版), 2019, 50(1): 206-213. Chang Jin, Yang Heping, Xiao Jie, et al. Effect of Acid Rain Infiltration on Shear Strength of Expansive Soil and Its Microscopic Test[J]. Journal of Central South University (Science and Technology), 2019, 50(1): 206-213.
[27] 高磊, 胡国辉, 杨晨, 等.玄武岩纤维加筋黏土的剪切强度特性[J]. 岩土工程学报, 2016, 38(增刊1): 231-237. Gao Lei, Hu Guohui, Yang Chen, et al.Shear Strength Characteristics of Basalt Fiber-Reinforced Clay[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(Sup. 1): 231-237.
[28] 高金花, 徐阳, 闫雪莲, 等.吉林省西部湖泊地带苏打盐渍土溶陷性[J]. 吉林大学学报(地球科学版), 2020, 50(4): 1104-1111. Gao Jinhua, Xu Yang, Yan Xuelian, et al. Salt Resolving Slump of Sodic Saline Soil in the Lake Area of Western Jilin Province[J]. Journal of Jilin University(Earth Science Edition), 2020, 50(4): 1104-1111.
[29] 土工试验方法标准:GB/T 50123—2019[S]. 北京:中国计划出版社,1999. Standard for Geotechnial Testing Method: GB/T 50123—2019[S]. Beijing: China Planning Press, 1999.
[30] 张旭东, 王清, 李鹏飞, 等.乾安"泥林"土体分散性研究[J]. 东北大学学报(自然科学版), 2015, 36(11): 1643-1647. Zhang Xudong, Wang Qing, Li Pengfei, et al. Research on Soil Dispersion of Qian’an Soil Forest[J]. Journal of Northeastern University (Natural Science), 2015, 36(11): 1643-1647.
[31] 张静, 吉林省西部地区分散性季冻土的分散机理研究[D]. 长春:吉林大学, 2010. Zhang Jing. Research on the Dispersion Mechanism of the Dispersive Seasonal Frozen Soil in the Western of Jilin Province[D]. Changchun: Jilin University, 2010.
[32] 王清, 刘宇峰, 刘守伟, 等.吉林西部盐渍土多场作用下物质特性演化规律[J]. 吉林大学学报(地球科学版), 2017, 47(3): 807-817. Wang Qing, Liu Yufeng, Liu Shouwei, et al. Evolution Law of the Properties of Saline Soil in Western Jilin Province Under Multi Field Effect[J]. Journal of Jilin University(Earth Science Edition), 2017, 47(3): 807-817.
[33] Sherard J L, Decker R S, Ryker N L. Piping in Earth Dams of Dispersive Clay[C]//Proceedings, Specialty Conference on Performance of Earth and Earth-Supported Structures.West Lafayette: Purdue University, 1972: 589-626.
[34] 土工试验规程:SL 237—1999[S]. 北京:中国水利水电出版社,1999. Specification of Soil Test: SL 237—1999[S]. Beijing: China Water & Power Press, 1999.
[35] 王清, 王凤艳, 肖树芳.土微观结构特征的定量研究及其在工程中的应用[J]. 成都理工学院学报, 2001, 28(2): 148-153. Wang Qing, Wang Fengyan, Xiao Shufang. A Quantitative Study of the Microstructure Characteristics of Soil and Its Application to the Engineering[J]. Journal of Chengdu University of Technology, 2001, 28(2): 148-153.
[36] Liu, C, Shi B, Zhou J, et al. Quantification and Characterization of Microporosity by Image Processing, Geometric Measurement and Statistical Methods: Application on SEM Images of Clay Materials[J]. Applied Clay Science, 2011, 54(1): 97-106.
[1] 张琦, 杨忠年, 时伟, 凌贤长, 涂志斌. 冻融循环下初始含水率对非饱和膨胀土剪切特性试验[J]. 吉林大学学报(地球科学版), 2021, 51(5): 1544-1550.
[2] 洪勃, 李喜安, 王力, 李林翠. 延安Q3原状黄土渗透各向异性及微结构分析[J]. 吉林大学学报(地球科学版), 2019, 49(5): 1389-1397.
[3] 周阳, 苏生瑞, 李鹏, 马洪生, 张晓东. 板裂千枚岩微观结构与力学性质[J]. 吉林大学学报(地球科学版), 2019, 49(2): 504-513.
[4] 洪勇, 周蓉, 郑孝玉. 不同排水条件下饱和砂土快速大剪切力学特性[J]. 吉林大学学报(地球科学版), 2018, 48(5): 1416-1426.
[5] 苟富刚, 龚绪龙, 王光亚. 连云港海相软土不排水强度特征[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1165-1173.
[6] 洪勇, 车效文, 郑孝玉, 刘鹏, 周蓉. 陕西泾阳南塬滑坡干湿黄土快速大剪切力学特性[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1207-1218.
[7] 李杨, 王清, 王坛华. 冻土水热耦合模型数值求解及结果检验[J]. 吉林大学学报(地球科学版), 2015, 45(1): 207-213.
[8] 程东会, 王文科, 侯光才, 杨红斌, 李瑛, 张二勇. 毛乌素沙地植被与地下水关系[J]. J4, 2012, 42(1): 184-189.
[9] 牛岑岑, 王清, 苑晓青, 杨静, 宋晶, 王吉亮. 渗流作用下吹填土微观结构特征定量化研究[J]. J4, 2011, 41(4): 1104-1109.
[10] 赵安平, 王清, 张中琼. 土体微观结构对冻胀影响的灰色关联及粗糙集评价[J]. J4, 2011, 41(3): 791-798.
[11] 王生新, 柴寿喜, 王晓燕. 加筋条件和含水率对加筋土抗压强度和应力应变的影响[J]. J4, 2011, 41(3): 784-790.
[12] 王常明, 林容, 陈多才, 张先伟, 王科. 辽西黄土湿陷变形特性及湿陷后微观结构变化[J]. J4, 2011, 41(2): 471-477.
[13] 刘飞, 佴磊, 吕岩, 张敏. 分解度对草炭土结构特征及强度的影响试验[J]. J4, 2010, 40(6): 1395-1400.
[14] 王常明, 马栋和, 林容, 王科, 宋朋燃. 辽西地区黄土的强度与本构特性[J]. J4, 2010, 40(5): 1104-1109.
[15] 宋晶, 王清, 陈慧娥, 孙铁, 张中琼, 张鹏. 高粘性高盐量吹填土固结过程孔隙分维特征[J]. J4, 2010, 40(2): 361-367.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 周彦章,迟宝明,刘中培. 山东夏甸金矿床充水机理构造控制模式[J]. J4, 2008, 38(2): 255 -0260 .
[2] 张渊,刘连登,孙景贵,陈国华,张洪喜,闫复传,杨开春. 胶东西北部黄埠岭金矿床两期次叠加成矿[J]. J4, 2008, 38(1): 21 -0026 .
[3] 张玉玲,姚军,赵晓波,曹春英,郑松志. 复合型微生物絮凝剂产生菌YL3的优化条件[J]. J4, 2008, 38(5): 864 -0868 .
[4] 于 强,任战利. 鄂尔多斯盆地黄陵、东胜地区地温场对比[J]. J4, 2008, 38(6): 933 -0936 .
[5] 杨春梅, 李洪奇,陆大卫,张方礼,高 原,邵英超. 不同驱替方式下岩石电阻率与饱和度的关系[J]. J4, 2005, 35(05): 667 -671 .
[6] 崔迎春, 石学法, 刘季花, 马立杰. 70 Ma以来风尘活动在太平洋铁锰结壳中的记录[J]. J4, 2012, 42(2): 393 -399 .
[7] 巩向博,吕庆田,韩立国,谭尘青. 起伏地表地震波场角度域照明分析[J]. 吉林大学学报(地球科学版), 2013, 43(2): 610 -615 .
[8] 潘建立. 顶管施工引起土体变形的计算方法及应用[J]. 吉林大学学报(地球科学版), 2016, 46(5): 1458 -1465 .
[9] 常晓军, 葛伟亚, 于洋, 赵宇, 叶龙珍, 张泰丽, 魏振磊. 福建省永泰县东门旗山滑坡诱发机理与防治措施[J]. 吉林大学学报(地球科学版), 2019, 49(4): 1063 -1072 .
[10] 李勇, 陈世加, 尹相东, 何清波, 苏恺明, 肖正录, 邱雯, 何鑫. 储层中固体沥青研究现状、地质意义及其发展趋势[J]. 吉林大学学报(地球科学版), 2020, 50(3): 732 -746 .