吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (5): 1523-1534.doi: 10.13278/j.cnki.jjuese.20200293
张安琪1, 苏雷1, 凌贤长1,2, 唐亮2, 王建峰1, 焉振3
Zhang Anqi1, Su Lei1, Ling Xianzhang1,2, Tang Liang2, Wang Jianfeng1, Yan Zhen3
摘要: 国际贸易的迅速发展,加快了港口工程建设的速度,同时对港口工程的抗震性能提出了更高的要求。高桩码头作为港口工程中最常用的结构型式之一,在我国港口工程建设方面得到了广泛应用。目前对高桩码头的抗震简化分析方法以及桩基特性对高桩码头地震响应的影响方面研究较少。基于此,本文利用开源有限元数值计算平台OpenSees,介绍了高桩码头简化分析方法模型的建立途径,并分析了桩基特性参数对高桩码头关键地震响应量的影响。研究结果表明:钢筋弹性模量对码头桩基的地震响应影响较小,可减少考虑;钢筋的强化阶段对截面达到屈服曲率后的弯矩承载力起主要作用;混凝土抗压强度的增加可降低结构的位移响应峰值;过大或过小的混凝土抗压强度和钢筋屈服强度,都不利于码头结构对地震能量的耗散。
中图分类号:
[1] 谢雄耀, 黄宏伟, 杜军. 某深水港岸坡桩基码头设计方案有限元分析[J]. 地下空间与工程学报, 2005, 1(7):1104-1108. Xie Xiongyao, Huang Hongwei, Du Jun. Application of FEM to Analyzing Pile-Groups Design of an Dock Sturcture in a Harbour[J]. Chinese Journal of Underground Space and Engineering, 2005, 1(7):1104-1108. [2] 廖雄华, 张克绪. 天津港高桩码头桩基-岸坡土体相互作用的数值分析[J]. 水利学报, 2002, 33(4):81-87. Liao Xionghua, Zhang Kexu. Numercial Analysis of Pile-Soil Interaction in Long-Piled Wharf of Tianjin Port[J]. Journal of Hydraulic Engineering, 2002, 33(4):81-87. [3] 秦建敏. 青岛港木质高桩码头变形预报与稳定性数值分析[D]. 青岛:中国海洋大学, 2003. Qin Jianmin. Deformation Prediction and Stability Numerical Analysis of Wooden Pile-Supported Pier in the Qingdao Harbor[D]. Qingdao:Ocean University of China, 2003. [4] 张石平. 高桩码头体系受力变形特性静动力分析[D]. 大连:大连海事大学, 2013. Zhang Shiping. Static and Dynamic Analyses of the Characteristics of Deformation and Internal Forces of a Piled Wharf System[D]. Dalian:Dalian Maritime University, 2013. [5] 梁丰收. 码头岸坡被动桩工作特性及岸坡桩基相互作用分析[D]. 重庆:重庆交通大学, 2010. Liang Fengshou. Study on the Property of Passive-Pile in Wharf Bank and the Interaction Between the Slope and Piles[D]. Chongqing:Chongqing Jiaotong University, 2010. [6] 祝振宇, 王元战, 李越松, 等. 高桩码头-岸坡相互作用有限元数值模拟[J]. 中国港湾建设, 2006, 26(2):1-4. Zhu Zhenyu, Wang Yuanzhan, Li Yuesong, et al. Finite Element Analysis of Interaction Between Piled-Wharf and Slope[J]. China Harbour Engineering, 2006, 26(2):1-4. [7] Lee J K, Park, S H, Kim Y. Transverse Free Vibration of Axially Loaded Tapered Friction Piles in Heterogeneous Soil[J]. Soil Dynamics and Earthquake Engineering, 2019, 117:116-121. [8] Ma J, Liu F, Gao X, et al. Buckling and Free Vibration of a Single Pile Considering the Effect of Soil-Structure Interaction[J]. International Journal of Structural Stability and Dynamics, 2017, 18(4):1850061. [9] 王雪婷. 中日美高桩码头抗震设计方法对比研究[D]. 大连:大连理工大学, 2010. Wang Xueting. Comparative Study on Seismic Design of Pile Supported Wharf in China, Japan and the United States[D]. Dalian:Dalian University of Technology, 2010. [10] 张学峰, 苗如松. 高桩承台基础损伤状态服役性能仿真分析及损伤评价[J]. 吉林大学学报(工学版), 2020, 50(3):1006-1016. Zhang Xuefeng, Miao Rusong. Simulation Analysis and Condition Assessment of Service Performance for Damaged High-Pile Foundation[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(3):1006-1016. [11] 许锡宾. 从天津港码头设施的震害谈高桩码头结构设计[J]. 水运工程, 1993(4):18-22.doi:10.16233/j.cnki.issn1002-4972.1993.04.006. Xu Xibin. Discussion on Structural Design of Pile-Supported Wharf from Earthquake Damage of Tianjin Port Facilities[J]. Port and Waterway Engineering, 1993(4):18-22.doi:10.16233/j.cnki.issn1002-4972.1993.04.006. [12] 衣伟. 考虑桩土相互作用高桩码头单桩地震反应[J]. 港口工程, 1997(4):30-33. Yi Wei. Seismic Response of Single Pile in Pile-Supported Wharf Considering Soil-Pile Interaction[J]. China Harbour Engineering, 1997(4):30-33. [13] 李颖, 贡金鑫. 考虑桩土相互作用的高桩码头非线性地震反应分析[J]. 水利水运工程学报, 2010(2):92-99. Li Ying, Gong Jinxin. Nonlinear Seismic Response Analysis of Wharf Structure Considering Soil-Pile Dynamic Interaction[J]. Hydro-Science and Engineering, 2010(2):92-99. [14] 袁野, 唐小微. 循环弹塑性本构模型在港口沉箱码头抗震理论中的应用[J]. 中国港湾建设, 2011, 31(3):13-16. Yuan Ye, Tang Xiaowei. Application of Cyclic Elasto-Plastic Model on Seismic Theories in Port of Caisson Quay[J]. China Harbour Engineering, 2011, 31(3):13-16. [15] 刘晓, 唐小微, 栾茂田. 地基液化导致沉箱码头破坏及地基加固方法的非线性数值分析[J]. 防灾减灾工程学报, 2009, 29(5):518-523. Liu Xiao, Tang Xiaowei, Luan Maotian. Nonlinear Numerical Analysis of Caisson Quay Failure Due to Soil Liquefaction and of Soil Strengthen Method[J]. Journal of Disaster Prevention and Mitigation Engineering, 2009, 29(5):518-523. [16] 曹胜敏. 高桩码头桩竖向荷载下静动力学行为研究[D]. 成都:西南交通大学, 2008. Cao Shengmin. Research on Static-Dynamic Mechanical Behaviors of Pier Pile Under Vertical Load[D]. Chengdu:Southwest Jiaotong University, 2008. [17] 王多垠, 杨洋, 黄然, 等. 墩柱梁板式码头结构在三峡库区的推广应用[J]. 水运工程, 2011(12):91-94. Wang Duoyin, Yang Yang, Huang Ran, et al. Popularization and Application of Pier Beam Slab Terminal Structure in Three Gorges Reservoir[J]. Port and Waterway Engineering, 2011(12):91-94. [18] 张昊, 高玉峰, 谭慧明, 等. 遮帘式板桩码头变形机制有限元分析[J]. 长江科学院院报, 2014, 31(7):81-85. Zhang Hao, Gao Yufeng, Tan Huiming, et al. Finite Element Analysis on Deformation Mechanism of Sheet-Pile Quay Wall with Barrier Piles[J]. Journal of Yangtze River Scientific Research Institute, 2014, 31(7):81-85. [19] 徐鹏举, 唐亮, 凌贤长, 等. 液化场地桩-土-桥梁结构地震相互作用简化分析方法[J]. 吉林大学学报(地球科学版), 2010, 40(5):1121-1127. Xu Pengju, Tang Liang, Ling Xianzhang, et al. Simplified Analysis Method for Seismic Pile-Soil-Bridge Structure Interaction in Liquefying Ground[J]. Journal of Jilin University (Earth Science Edition), 2010, 40(5):1121-1127. [20] Iai S. Seismic Performance-Based Design of Port Structures and Simulation Techniques[C]//International Workshop on Earthquake Simulation in Geotechnical Engineering. San Diego:University of San Diego, 2001:1-12. [21] Takahashi A, Takemura J. Liquefaction-Induced Large Displacement of Pile-Supported Wharf[J]. Soil Dynamics and Earthquake Engineering, 2005, 25(11):811-825. [22] 陈永战, 魏汝龙. 桩基码头岸坡与桩基相互作用的试验研究[J]. 水利水运科学研究, 1993(3):256-266. Chen Yongzhan, Wei Rulong. Experimental Study on the Interaction Between Bank Slope and Pile Foundation of Wharf[J]. Hydro-Science and Engineering, 1993(3):256-266. [23] 王年香. 码头桩基与岸坡相互作用的数值模拟和简化计算方法研究[D]. 南京:南京水利科学研究院, 1998. Wang Nianxiang. Numercial Analysis and Simplified Analytical Methods for the Interaction Between Pile-Supported Pier and Bank Slope[D]. Nanjing:Nanjing Hydraulic Research Institute, 1998. [24] 侯瑜京, 韩连兵, 梁建辉. 深水港码头围堤和群桩结构的离心模型试验[J]. 岩土工程学报, 2004, 26(5):594-600. Hou Yujing, Han Lianbing, Liang Jianhui. Centrifuge Modeling of Sea Dike and Pile Groups in a Habour[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(5):594-600. [25] Roeder C W, Graff R, Soderstrom J, et al. Seismic Performance of Pile-Wharf Connections[J]. Journal of Structural Engineering, 2005, 131(3):428-437. [26] Blandon C A, Bell J K, Restrepo J I, et al. Assessment of Seismic Performance of Two Pile-Deck Wharf Connections[J]. Journal of Performance of Constructed Facilities, 2010, 25(2):98-104. [27] Shafieezadeh A, DesRoches R, Rix G J, et al. Three-Dimensional Wharf Response to Far-Field and Impulsive Near-Field Ground Motions in Liquefiable Soils[J]. Journal of Structural Engineering, 2012, 139(8):1395-1407. [28] Su L, Lu J, Elgamal A, et al. Seismic Performance of a Pile-Supported Wharf:Three-Dimensional Finite Element Simulation[J]. Soil Dynamics and Earthquake Engineering, 2017, 95:167-179. [29] 陶桂兰, 陈祥, 王定. 高桩码头叉桩布置形式抗震性能分析[J]. 河海大学学报(自然科学版), 2012, 40(4):469-474. Tao Guilan, Chen Xiang, Wang Ding. Seismic Performance Analysis of Fork Pile Arrangement Type of High-Pile Wharf[J]. Journal of Hohai University (Natural Sciences), 2012, 40(4):469-474. [30] Shah D. Seismic Fragility Analysisof Pile Supported Wharf for Some Important Port Sites in Gujarat[J]. Journal of Structural Engineering, 2020, 47(2):111-123. [31] Doran B, Shen J, Akbas B. Seismic Evaluation of Existing Wharf Structures Subjected to Earthquake Excitation:Case Study[J]. Earthquake Spectra, 2015, 31(2):1177-1194. [32] Gao S, Gong J, Feng Y. Equivalent Damping Ratio Equations in Support of Displacement-Based Seismic Design for Pile-Supported Wharves[J]. Journal of Earthquake Engineering, 2016, 21(3):1-38. [33] Nagao T, Lu P. A Simplified Reliability Estimation Method for Pile-Supported Wharf on the Residual Displacement by Earthquake[J]. Soil Dynamics and Earthquake Engineering, 2020, 129:105904. [34] Boulanger R W, Curras C J, Kutter B L, et al. Seismic Soil-Pile-Structure Interaction Experiments and Analyses[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1999, 125(9):750-759. [35] Boulanger R W, Kutter B L, Brandenberg S J, et al. Pile Foundations in Liquefied and Laterally Spreading Ground during Earthquakes:Centrifuge Experiments and Analyses[R]. Davis:Center for Geotechnical Modeling, Department of Civil and Environmental Engineering, University of California, 2003. [36] 预应力混凝土异型预制桩技术规程:JGJ/T 405-2017[S]. 北京:中国建筑工业出版社, 2017. Technical Specification for Prefabricated Special-Shaped Piles of Prestressed Concrete:JGJ/T 405-2017[S]. Beijing:China Architecture and Building Press, 2017. [37] Su L, Wan H P, Dong Y, et al. Seismic Fragility Assessment of Large-Scale Pile-Supported Wharf Structures Considering Soil-Pile Interaction[J]. Engineering Structures, 2019, 186:270-281. [38] 罗弘. 谈结构在地震作用下的能量反应分析[J]. 中外建筑, 2005(3):108-109. Luo Hong.Energy Response Analysis of Structures Under Seismic Action[J]. Chinese and Overseas Architecture, 2005(3):108-109. |
[1] | 孟畅, 唐亮. 液化场地高桩码头抗震性能地震动效应[J]. 吉林大学学报(地球科学版), 2021, 51(5): 1463-1472. |
[2] | 乐友喜,黄健良,张阳,周磊,张玉明,陈孔全. 地质模型约束下的地震储层预测技术及其在梨树断陷中的应用[J]. 吉林大学学报(地球科学版), 2013, 43(2): 632-640. |
[3] | 薛林福, 孙晶, 白烨, 潘保芝, 王建强. 黄骅坳陷孔南地区沙河街组井震基准面旋回匹配[J]. J4, 2012, 42(4): 935-940. |
[4] | 秦月霜, 陈友福, 叶萍. 薄窄砂体地震跟踪预测方法[J]. J4, 2012, 42(1): 269-274. |
|