吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (5): 1463-1472.doi: 10.13278/j.cnki.jjuese.20210055
孟畅1,2, 唐亮1,2
Meng Chang1,2, Tang Liang1,2
摘要: 为了研究地震动特性对液化场地高桩码头抗震性能的影响,本文依托高桩码头工程实例,建立了液化场地全直桩高桩码头地震反应分析数值模型,系统分析了地震作用下高桩码头的关键动力响应特征,确定了高桩码头各抗震性能需求指标,揭示了地震动特性对各抗震性能需求指标的影响规律。研究表明:地震作用下高桩码头桩基受弯、受剪和受压薄弱环节分别出现在持力层与上部粉质黏土层交界处、岸坡标高处和砂层与上部粉质黏土层交界处;峰值加速度、频谱特性和地震动输入方向均会显著影响高桩码头各项性能指标的抗震需求;高桩码头桩基的抗弯、抗剪和抗压性能需求分别由最靠陆侧桩桩顶处弯矩、各薄弱环节剪力和砂层与上部土层交界处轴力控制,抗震延性需求均由最靠海侧桩桩顶处水平位移需求控制。
中图分类号:
[1] Yang D S. Deformation-Based Seismic Design Models for Waterfront Structures[D]. Corvallis:Oregon State University, 1999. [2] Smith D, Naesgaard E, Kullmann H. Seismic Design of a New Pile and Deck Structure Adjacent to Existing Caissons Founded on Potentially Liquefiable Ground in Vancouver[C]//Proceedings of 13th World Conference on Earhtquake Engineering. Vancouver:[s. n.], 2004:1-14. [3] Mccullough N J. The Seismic Geotechnical Modeling, Performance, and Analysis of Pile-Supported Wharves[D]. Corvallis:Oregon State University, 2003. [4] 谢世楞. 奥克兰港高桩码头的震害对比[J]. 港工技术, 1990(4):13-17. Xie Shileng. Comparison of Seismic Damage at Auckland Harbour Pile-Wharf[J]. Port Engineering Technology, 1990(4):13-17. [5] 高明, 赵颖, 靳道斌. 桩基码头抗震实验研究及动力分析[J]. 水利水运科学研究, 1981(4):37-50. Gao Ming, Zhao Ying, Jin Daobin. A Seismic Experimental Studies and Dynamic Analysis of Pile Supported Piers[J]. Journal of Nanjing Hydraulic Research Institute, 1981(4):37-50. [6] 侯瑜京, 韩连兵, 梁建辉. 深水港码头围堤和群桩结构的离心模型试验[J]. 岩土工程学报, 2004, 26(5):594-600. Hou Yujing, Han Lianbing, Liang Jianhui. Centrifuge Modeling of Sea Dike and Pile Groups in a Habour[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(5):594-600. [7] Su L, Lu J, Elgamal A, et al. Seismic Performance of a Pile-Supported Wharf:Three-Dimensional Finite Element Simulation[J]. Soil Dynamics and Earthquake Engineering, 2017, 95:167-179. [8] 苏雷. 液化侧向扩展场地桩-土体系地震模拟反应分析[D]. 哈尔滨:哈尔滨工业大学, 2016. Su Lei. Earthquake Simulation Response of Soil-Pile System in Liquefaction-Induced Lateral Spreading Ground[D]. Harbin:Harbin Institute of Technology, 2016. [9] Conca D, Bozzoni F, Lai C G. Interdependencies in Seismic Risk Assessment of Seaport systems:Case Study at Largest Commercial Port in Italy[J]. Asce-Asme Journal of Risk and Uncertainty in Engineering Systems:Part A:Civil Engineering, 2020, 6(2). doi:10.1061/AJRUA6.0001043. [10] Su L, Wan H P, Li Y, et al. Soil-Pile-Quay Wall System With Liquefaction-Induced Lateral Spreading:Experimental Investigation, Numerical Simulation, and Global Sensitivity Analysis[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2018, 144(11):04018087.1-04018087.17. [11] Madabhushi G, Boksmati J I, Torres S G. Numerical and Centrifuge Modeling of Gravity Wharf Structures Subjected to Seismic Loading[J]. Journal of Waterway Port Coastal and Ocean Engineering, 2020, 146(4):04020007. [12] Geyin M, Maurer B W. Fragility Functions for Liquefaction-Induced Ground Failure[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(12). doi:10.1061/(ASCE) GT.1943-5606.0002416. [13] 于仕达, 张延军, 李云峰. 安庆市某地区液化场地判别研究[J]. 世界地质, 2021, 40(1):170-175. Yu Shida, Zhang Yanjun, Li Yunfeng. Identification of Liquefaction Site in an Area of Anqing[J]. Global Geology, 2021, 40(1):170-175. [14] 王炳煌. 高桩码头工程[M]. 北京:人民交通出版社, 2010. Wang Binghuang. High-Piled Wharf[M]. Beijing:People's Communications Press, 2010. [15] Mckenna F. OpenSees:A Framework for Earthquake Engineering Simulation[J]. Computing in Science and Engineering, 2011, 13(4):58-66. [16] 常士骠, 张苏民. 工程地质手册[M]. 北京:中国建筑工业出版社, 2007. Chang Shibiao, Zhang Sumin. Engineering Geology Handbook[M]. Beijing:China Architecture and Building Press, 2007. [17] 张明义, 刘雪颖, 王永洪, 等.粉土及粉质黏土对静压沉桩桩端阻力影响机制现场试验[J]. 吉林大学学报(地球科学版), 2020, 50(6):1804-1813. Zhang Mingyi, Liu Xueying, Wang Yonghong, et al. Field Test on Influencing Mechanism of Silty Soil and Silty Clay on Tip Resistance of Static[J]. Journal of Jilin University (Earth Science Edition), 2020, 50(6):1804-1813. [18] 孟畅. 液化场地高桩码头地震易损性分析[D]. 哈尔滨:哈尔滨工业大学, 2020. Meng Chang. Seismic Fragility Analysis of the Pile-Supported Wharf in Liquefiable Soils[D]. Harbin:Harbin Institute of Technology, 2020. [19] 梁兴文, 王社良, 李晓文. 混凝土结构设计原理[M]. 北京:科学出版社, 2003. Liang Xingwen, Wang Sheliang, Li Xiaowen. Principle of Concrete Structure Design[M]. Beijing:Science Press, 2003. [20] 预应力混凝土用钢棒:GB/T 5223.3-2005[S]. 北京:中国标准出版社, 2006. Steel Bars Prestressed Concrete:GB/T 5223.3-2005[S]. Beijing:Standards Press of China, 2006. [21] 张楠. 考虑结构-桩-土相互作用的PHC管桩抗震性能研究[D]. 天津:天津大学, 2014. Zhang Nan. Study on Seismic Performance of Pipe Piles Considering Soil-Pile-Superstructure Interaction[D]. Tianjin:Tianjin University, 2014. |
[1] | 张安琪, 苏雷, 凌贤长, 唐亮, 王建峰, 焉振. 高桩码头抗震简化分析方法[J]. 吉林大学学报(地球科学版), 2021, 51(5): 1523-1534. |
[2] | 徐鹏举, 唐亮, 凌贤长, 高霞, 苏雷, 辛全明, 张勇强. 液化场地桩-土-桥梁结构地震相互作用简化分析方法[J]. J4, 2010, 40(5): 1121-1127. |
|