吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (6): 1654-1664.doi: 10.13278/j.cnki.jjuese.20200207

• 地质与资源 • 上一篇    下一篇

巴西桑托斯盆地高含CO2油气藏类型、特征及成因模式

赵健1,2, 赵俊峰1, 任康绪1,2, 王童奎1, 许必锋1, 郝强升1, 高志远1   

  1. 1. 中国石油国际勘探开发有限公司, 北京 100034;
    2. 中国石油勘探开发研究院, 北京 100083
  • 收稿日期:2020-09-16 出版日期:2021-11-26 发布日期:2021-11-24
  • 作者简介:赵健(1982-),男,高级工程师,主要从事海外油气勘探与石油地质综合研究工作,E-mail:Zhaojian@cnpcint.com
  • 基金资助:
    国家科技重大专项(2016ZX05029005)

Main Types, Characteristics and Genetic Model of Oil & Gas Reservoirs with High CO2 Content in Santos Basin, Brazil

Zhao Jian1,2, Zhao Junfeng1, Ren Kangxu1,2, Wang Tongkui1, Xu Bifeng1, Hao Qiangsheng1, Gao Zhiyuan1   

  1. 1. China National Oil and Gas Exploration & Development Corporation, Beijing 100034, China;
    2. PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China
  • Received:2020-09-16 Online:2021-11-26 Published:2021-11-24
  • Supported by:
    Supported by the National Science and Technology Major Project (2016ZX05029005)

摘要: 桑托斯盆地盐下油气藏中CO2分布广泛,局部摩尔分数极高,给勘探、开发都带来了巨大挑战。通过对典型油气藏解剖分析,并利用流体取样、闪蒸实验测试分析等资料,将盆内油气藏分为3类:类型Ⅰ,含CO2溶解气的高气油比常规油藏;类型Ⅱ,CO2气顶+油环型油气藏;类型Ⅲ,(含溶解烃)CO2气藏。其中类型Ⅰ油藏和类型ⅢCO2气藏中流体性质均匀、稳定,油-水界面、气-水界面清晰;类型Ⅱ气顶+油环型油气藏流体成分和性质不均匀、不稳定,流体界面复杂。物理热模拟实验表明盆内3种类型油气藏是地层条件下,超临界状态CO2和烃类有限互溶,动态成藏过程不同阶段的产物。动态成藏过程中,CO2对烃类进行抽提、萃取,烃类(原油)对CO2进行溶解,两者相互作用存在一个动态平衡(范围)。烃类和CO2相对量大小决定了最终的油气藏类型,温-压条件变化和油气藏开发可改变油气藏平衡状态,造成流体相态变化和3类油气藏间的相互转化。

关键词: 桑托斯盆地, 高含CO2油气藏类型, 流体性质, 超临界状态CO2, 成因模式, 互溶动态平衡

Abstract: Together with the encouraging oil and gas discoveries in the pre-salt section in Santos basin, the reservoirs are also characterized by a wide occurrence of CO2 and high gas-oil ratio (GOR), which leads to a series of challenges both in oil & gas exploration and development. Based on the CO2 content and fluid phases, the reservoirs currently discovered in Santos basin could be divided into three types:Type Ⅰ conventional oil reservoirs containing dissolved CO2 with high GOR, type Ⅱ CO2 gas cap + oil ring reservoirs and type Ⅲ CO2 gas reservoirs (containing dissolved hydrocarbons). For type Ⅰ oil reservoir and type Ⅲ CO2 gas reservoir, the fluid properties, such as GOR, API and CH4 content are uniform, and oil-water contact and gas-water contact are easily defined. For type Ⅱ gas cap+oil ring reservoirs, its fluid properties are not uniform anymore and are very complex. The authors proposed an innovative geological model, dynamic dissolving-extracting between CO2 and hydrocarbon. The three types of reservoirs are likely to be a mixture of two different endmembers, supercritical CO2 and fluid hydrocarbon. The crude oil dissolves CO2 while CO2 extracts lighter components of hydrocarbon. There is a dynamic balance point or scale under certain pressure and temperature. If CO2 volume is less than the balance points, the crude oil could dissolve it completely and the reservoir belongs to type Ⅰ. If the CO2 volume is larger than that, a gas cap will appear, and the reservoir become type Ⅱ. In some situations, the CO2 volume is very large while hydrocarbon is very limited, the type Ⅲ CO2 gas reservoir will be developed. Therefore, the relative amount of hydrocarbon and CO2 determine the fluid phases and types of reservoirs finally. Meanwhile, the reservoir types could also change with temperature, pressure, or tectonic movement. Because these factors could break such balance and result in phase change and transition.

Key words: Santos basin, oil & gas reservoirs with high CO2 content, fluid properties, supercritical CO2, genetic model, dynamic balance of dissolving-extracting

中图分类号: 

  • P618.13
[1] Gamboa L, Ferraz A, Baptista R, et al. Geotectonic Controls on CO2 Formation and Distribution Processes in the Brazilian Pre-Salt Basins[J]. Geosciences, 2019, 9(6):252. https://doi.org/10.3390/geosciences9060252.
[2] 马安来,孙红军,郑磊,等桑托斯盆地Jupiter油气田富含CO2油气藏形成机制[J]. 石油与天然气地质,2017,38(2):371-378. Ma Anlai,Sun Hongjun,Zheng Lei,et al.A Study on Forming Mechanisms of CO2-Rich Reservoirs in Jupiter Oilfield, Santos Basin, Brazil[J]. Oil and Gas Geology, 2017, 38(2):371-378.
[3] 赵健,赵俊峰,任康绪,等. 巴西桑托斯盆地CO2区域分布及主控因素[J]. 地球科学,2021,46(9):3217-3229.https://doi.org/10.3799/dqkx.2020.359 Zhao Jian, Zhao Junfeng, Ren Kangxu,et al. Distribution and Main Controlling Factors of CO2 in Santos Basin, Brazil[J].Earth Science,2021, 46(9):3217-3229.https://doi.org/10.3799/dqkx.2020.359
[4] Thrasher J, Fleet A J. Predicting the Risk of Carbon Dioxide "Pollution" in Petroleum Reservoirs[C]//17th International Meeting on Organic Geochemistry. Donostia-San Sebastian:[s.n.], 1995.
[5] Imbus S W, Katz B J, Urwongse T. Predicting CO2 Occurrence on a Regional Scale:Southeast Asia Example[J]. Organic Geochemistry, 1998, 29:325-345.
[6] 贾怀存, 康洪全, 李明刚, 等.桑托斯盆地盐下CO2聚集条件及对油气成藏影响[J]. 西南石油大学学报(自然科学版), 2020, 42(4):66-72. Jia Huaicun, Kang Hongquan, Li Minggang, et al. Accumulation Conditions of CO2 and Its Influence to Pre-Salt Oilfields, Santos Basin[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2020, 42(4):66-72.
[7] Santos E V, Cerqueira J R, Prinzhofer A. Origin of CO2 in Brazilian Basins[C]//AAPG Annual Convention and Exhibition. Long Beach:[s.n.], 2012.
[8] 马安来,黎玉战,张玺科,等.桑托斯盆地盐下J油气田CO2成因、烷烃气地球化学特征及成藏模式[J]. 中国海上油气,2015, 27(5):13-20. Ma Anlai,Li Yuzhan,Zhang Xike,et al.Carbon Dioxide Origin, Alkane Gas Geochemical Characteristics and Pool-Forming Model of Pre-Salt J-Oilfield in Offshore Santos Basin,Brazil[J]. China Offshore Oil and Gas, 2015, 27(5):13-20.
[9] Luiz G, Andre F, Rui B, Geotectonic Controls on CO2 Formation and Distribution Process in the Brazilian Pre-Salt Basin[J]. Geoscience, 2019, 252:1-14
[10] Okamoto I, Li X, Ohsumi T. Effect of Supercritical CO2 as the Organic Solvent on Cap Rock Sealing Performance for Underground Storage[J]. Energy, 2005, 30(11):2344-2351.
[11] Diep P, Jordan K, Johnson K, et al. CO2-Fluorocarbon and CO2-Hydrocarbon Interactions from First-Principles Calculations[J]. Journal of Physical Chemistry A, 1998, 102(12):2231-2236.
[12] Hyatt J A. Liquid and Supercritical Carbon Dioxide as Organic Solvents[J]. Journal of Organic Chemistry, 1984, 49(26):5097-5101.
[13] 李孟涛, 单文文, 刘先贵,等. 超临界氧化碳混相驱油机理实验研究[J]. 石油学报, 2006, 27(3):80-83. Li Mengtao, Shan Wenwen, Liu Xiangui, et al. Laboratory Study on Miscible Oil Displacement Mechanism of Supercritical Carbon Dioxide[J]. Acta Petrolei Sinica, 2006, 27(3):80-83.
[14] 侯大力,罗平亚,王长权,等.高温高压下CO2在水中溶解度实验及理论模型[J]. 吉林大学学报(地球科学版), 2015,45(2):564-572. Hou Dali, Luo Pingya, Wang Changquan, et al. Experimental Research and Theoretical Model for CO2 Solubility in Water Under High Temperature and High Pressure[J]. Journal of Jilin University (Earth Science Edition), 2015,45(2):564-572.
[15] 马柯阳. 凝析油形成新模式:原油蒸发分馏机制研究[J]. 地球科学进展,1995,10(6):567-571. Ma Keyang. Study on Petroleum Evaporative Fractionation:A New Mechanism for the Generation of Condensate[J]. Advance in Earth Sciences, 1995,10(6):567-571.
[16] 张水昌.运移分馏作用:凝析油和蜡质油形成的一种重要机制[J]. 科学通报,2000,45(6):667-670. Zhang Shuichang.Migration Fractionation:An Important Mechanism for Condensate and Waxy-Oil Forming[J]. Chinese Science Bulletin, 2000, 45(6):667-670.
[17] Moreira J L P, Madeira C V, Gil J A,et al.Bacia de Santos[J]. Boletim de Geociencias da Petrobras, 2007, 15:531-549.
[18] Rancan C C, Oliveira L C, Carmo I, et al. Rochas Ígneas do Bloco de Libra, Bacia de Santos[C]//49 Congresso Brasileiro de Geologia. Rio de Janeiro:[s.n.], 2018.
[19] Nobakht M, Moghadam S,Gu Y. Mutual Interactions Between Crude Oil and CO2,Under Different Pressures[J]. Fluid Phase Equilibria, 2008, 265(2):94-103.
[20] Huang B, Tian H, Huang H, et al. Origin and Accumulation of CO2 and Its Natural Displacement of Oils in the Continental Margin Basins, Northern South China Sea[J]. AAPG Bull, 2015, 99(7):1349-1369.
[21] 高金玉,史卜庆,王林,等,CO2脱沥青作用形成重油油藏的一个实例[J]. 现代地质,2009,23(5):923-927. Gao Jinyu, Shi Buqing, Wang Lin, et al. A Typical Case of Heavy Oil Pool with the Origin of CO2 Deasphaltizing[J]. Geoscience, 2009,23(5):923-927.
[22] 黄俨然,张枝焕,王安龙,等.黄桥地区深源CO2对二叠系-三叠系油气成藏的影响[J]. 天然气地球科学,2012, 23(3):520-525. Huang Yanran, Zhang Zhihuan, Wang Anlong, et al. Deep-Sourced CO2 Influence on Permian and Triassic Oil and Gas Accumulation in Huangqiao Region[J]. Natural Gas Geoscience, 2012, 23(3):520-525.
[23] Liu Q, Zhu D, Jin Z, et al. Effects of Deep CO2 on Petroleum and Thermal Alteration:The Case of the Huangqiao Oil and Gas Field[J]. Chemical Geology, 2017, 469:214-229.
[24] Miller J C. Geology of the North and South McCallum Anticlines, Jackson County, Colorado with Special Reference to Petroleum and Carbon Dioxide[R]. Washington:United States Department of the Interior Geological Survey, 1934.
[25] 付晓飞,沙威,王磊, 等.松辽盆地幔源成因CO2气藏分布规律及控制因素[J].吉林大学学报(地球科学版), 2010,40(2):253-263. Fu Xiaofei, Sha Wei, Wang Lei, et al. Distribution Law of Mantle-Origin CO2 Gas Reservoirs and Its Controlling Factors in Songliao Basin[J]. Journal of Jilin University (Earth Science Edition), 2010,40(2):253-263.
[26] Evain M, Afilhado A, Rigoti C, et al. Deep Structure of the Santos Basin-São Paulo Plateau System, SE Brazil[J]. Journal of Geophysical Research:Solid Earth, 2015,120(8):5401-5431. https://doi:10.1002/2014JB01156.
[27] Jian Z, Maria J R O, Junfeng Z. et al. Fault Activity and Its Influences on Distribution of Igneous Rocks in Libra Block, Santos Basin:Semi-Quantitative to Quantitative Assessment of Fault Activity Based on High-Resolution 3D Seismic Data[C]//Offshore Technology Conference Brasil(OTC). Rio de Janeiro:[s.n.], 2019.https://onepetro.org/OTCBRASIL/proceedings-abstract/19OTCB/2-19OTCB/D021S016R005/181845
[1] 单玄龙, 蔡壮, 郝国丽, 邹欣彤, 赵容生. 地球化学温标估算长白山地热系统热储温度[J]. 吉林大学学报(地球科学版), 2019, 49(3): 662-672.
[2] 陈鹏, 单玄龙, 郝国丽, 赵容生, 周健. 长白山仙人桥温泉断裂岩溶复合型地热成因模式[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1236-1246.
[3] 陶崇智,邓超,白国平,王大鹏,牛新杰,白建朴,郑妍. 巴西坎波斯盆地和桑托斯盆地油气分布差异及主控因素[J]. 吉林大学学报(地球科学版), 2013, 43(6): 1753-1761.
[4] 王祝文, 向旻, 刘菁华, 王晓丽, 张雪昂, 杨闯. 基于分数阶Fourier变换的声波测井全波列特征时频分析[J]. J4, 2012, 42(5): 1553-1559.
[5] 杨峰田, 庞忠和, 王彩会, 段忠丰, 罗璐, 李义曼. 苏北盆地老子山地热田成因模式[J]. J4, 2012, 42(2): 468-475.
[6] 张大权, 丰成友, 李大新, 陈毓川, 曾载淋. 江西省崇义县淘锡坑钨锡矿床流体包裹体特征及矿床成因[J]. J4, 2012, 42(2): 374-383.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 程立人,张予杰,张以春. 西藏申扎地区奥陶纪鹦鹉螺化石[J]. J4, 2005, 35(03): 273 -0282 .
[2] 李 秉 成. 陕西富平全新世古气候的初步研究[J]. J4, 2005, 35(03): 291 -0295 .
[3] 和钟铧,杨德明,王天武,郑常青. 冈底斯带巴嘎区二云母花岗岩SHRIMP锆石U-Pb定年[J]. J4, 2005, 35(03): 302 -0307 .
[4] 陈 力,佴 磊,王秀范,李 金. 绥中某电力设备站场区地震危险性分析[J]. J4, 2005, 35(05): 641 -645 .
[5] 纪宏金,孙丰月,陈满,胡大千,时艳香,潘向清. 胶东地区裸露含金构造的地球化学评价[J]. J4, 2005, 35(03): 308 -0312 .
[6] 初凤友,孙国胜,李晓敏,马维林,赵宏樵. 中太平洋海山富钴结壳生长习性及控制因素[J]. J4, 2005, 35(03): 320 -0325 .
[7] 李斌,孟自芳,李相博,卢红选,郑民. 泌阳凹陷下第三系构造特征与沉积体系[J]. J4, 2005, 35(03): 332 -0339 .
[8] 李涛, 吴胜军,蔡述明,薛怀平,YASUNORI Nakayama. 涨渡湖通江前后调蓄能力模拟分析[J]. J4, 2005, 35(03): 351 -0355 .
[9] 旷理雄,郭建华,梅廉夫,童小兰,杨丽. 从油气勘探的角度论博格达山的隆升[J]. J4, 2005, 35(03): 346 -0350 .
[10] 章光新,邓伟,何岩,RAMSIS Salama. 水文响应单元法在盐渍化风险评价中的应用[J]. J4, 2005, 35(03): 356 -0360 .