吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (6): 1654-1664.doi: 10.13278/j.cnki.jjuese.20200207
赵健1,2, 赵俊峰1, 任康绪1,2, 王童奎1, 许必锋1, 郝强升1, 高志远1
Zhao Jian1,2, Zhao Junfeng1, Ren Kangxu1,2, Wang Tongkui1, Xu Bifeng1, Hao Qiangsheng1, Gao Zhiyuan1
摘要: 桑托斯盆地盐下油气藏中CO2分布广泛,局部摩尔分数极高,给勘探、开发都带来了巨大挑战。通过对典型油气藏解剖分析,并利用流体取样、闪蒸实验测试分析等资料,将盆内油气藏分为3类:类型Ⅰ,含CO2溶解气的高气油比常规油藏;类型Ⅱ,CO2气顶+油环型油气藏;类型Ⅲ,(含溶解烃)CO2气藏。其中类型Ⅰ油藏和类型ⅢCO2气藏中流体性质均匀、稳定,油-水界面、气-水界面清晰;类型Ⅱ气顶+油环型油气藏流体成分和性质不均匀、不稳定,流体界面复杂。物理热模拟实验表明盆内3种类型油气藏是地层条件下,超临界状态CO2和烃类有限互溶,动态成藏过程不同阶段的产物。动态成藏过程中,CO2对烃类进行抽提、萃取,烃类(原油)对CO2进行溶解,两者相互作用存在一个动态平衡(范围)。烃类和CO2相对量大小决定了最终的油气藏类型,温-压条件变化和油气藏开发可改变油气藏平衡状态,造成流体相态变化和3类油气藏间的相互转化。
中图分类号:
[1] Gamboa L, Ferraz A, Baptista R, et al. Geotectonic Controls on CO2 Formation and Distribution Processes in the Brazilian Pre-Salt Basins[J]. Geosciences, 2019, 9(6):252. https://doi.org/10.3390/geosciences9060252. [2] 马安来,孙红军,郑磊,等桑托斯盆地Jupiter油气田富含CO2油气藏形成机制[J]. 石油与天然气地质,2017,38(2):371-378. Ma Anlai,Sun Hongjun,Zheng Lei,et al.A Study on Forming Mechanisms of CO2-Rich Reservoirs in Jupiter Oilfield, Santos Basin, Brazil[J]. Oil and Gas Geology, 2017, 38(2):371-378. [3] 赵健,赵俊峰,任康绪,等. 巴西桑托斯盆地CO2区域分布及主控因素[J]. 地球科学,2021,46(9):3217-3229.https://doi.org/10.3799/dqkx.2020.359 Zhao Jian, Zhao Junfeng, Ren Kangxu,et al. Distribution and Main Controlling Factors of CO2 in Santos Basin, Brazil[J].Earth Science,2021, 46(9):3217-3229.https://doi.org/10.3799/dqkx.2020.359 [4] Thrasher J, Fleet A J. Predicting the Risk of Carbon Dioxide "Pollution" in Petroleum Reservoirs[C]//17th International Meeting on Organic Geochemistry. Donostia-San Sebastian:[s.n.], 1995. [5] Imbus S W, Katz B J, Urwongse T. Predicting CO2 Occurrence on a Regional Scale:Southeast Asia Example[J]. Organic Geochemistry, 1998, 29:325-345. [6] 贾怀存, 康洪全, 李明刚, 等.桑托斯盆地盐下CO2聚集条件及对油气成藏影响[J]. 西南石油大学学报(自然科学版), 2020, 42(4):66-72. Jia Huaicun, Kang Hongquan, Li Minggang, et al. Accumulation Conditions of CO2 and Its Influence to Pre-Salt Oilfields, Santos Basin[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2020, 42(4):66-72. [7] Santos E V, Cerqueira J R, Prinzhofer A. Origin of CO2 in Brazilian Basins[C]//AAPG Annual Convention and Exhibition. Long Beach:[s.n.], 2012. [8] 马安来,黎玉战,张玺科,等.桑托斯盆地盐下J油气田CO2成因、烷烃气地球化学特征及成藏模式[J]. 中国海上油气,2015, 27(5):13-20. Ma Anlai,Li Yuzhan,Zhang Xike,et al.Carbon Dioxide Origin, Alkane Gas Geochemical Characteristics and Pool-Forming Model of Pre-Salt J-Oilfield in Offshore Santos Basin,Brazil[J]. China Offshore Oil and Gas, 2015, 27(5):13-20. [9] Luiz G, Andre F, Rui B, Geotectonic Controls on CO2 Formation and Distribution Process in the Brazilian Pre-Salt Basin[J]. Geoscience, 2019, 252:1-14 [10] Okamoto I, Li X, Ohsumi T. Effect of Supercritical CO2 as the Organic Solvent on Cap Rock Sealing Performance for Underground Storage[J]. Energy, 2005, 30(11):2344-2351. [11] Diep P, Jordan K, Johnson K, et al. CO2-Fluorocarbon and CO2-Hydrocarbon Interactions from First-Principles Calculations[J]. Journal of Physical Chemistry A, 1998, 102(12):2231-2236. [12] Hyatt J A. Liquid and Supercritical Carbon Dioxide as Organic Solvents[J]. Journal of Organic Chemistry, 1984, 49(26):5097-5101. [13] 李孟涛, 单文文, 刘先贵,等. 超临界氧化碳混相驱油机理实验研究[J]. 石油学报, 2006, 27(3):80-83. Li Mengtao, Shan Wenwen, Liu Xiangui, et al. Laboratory Study on Miscible Oil Displacement Mechanism of Supercritical Carbon Dioxide[J]. Acta Petrolei Sinica, 2006, 27(3):80-83. [14] 侯大力,罗平亚,王长权,等.高温高压下CO2在水中溶解度实验及理论模型[J]. 吉林大学学报(地球科学版), 2015,45(2):564-572. Hou Dali, Luo Pingya, Wang Changquan, et al. Experimental Research and Theoretical Model for CO2 Solubility in Water Under High Temperature and High Pressure[J]. Journal of Jilin University (Earth Science Edition), 2015,45(2):564-572. [15] 马柯阳. 凝析油形成新模式:原油蒸发分馏机制研究[J]. 地球科学进展,1995,10(6):567-571. Ma Keyang. Study on Petroleum Evaporative Fractionation:A New Mechanism for the Generation of Condensate[J]. Advance in Earth Sciences, 1995,10(6):567-571. [16] 张水昌.运移分馏作用:凝析油和蜡质油形成的一种重要机制[J]. 科学通报,2000,45(6):667-670. Zhang Shuichang.Migration Fractionation:An Important Mechanism for Condensate and Waxy-Oil Forming[J]. Chinese Science Bulletin, 2000, 45(6):667-670. [17] Moreira J L P, Madeira C V, Gil J A,et al.Bacia de Santos[J]. Boletim de Geociencias da Petrobras, 2007, 15:531-549. [18] Rancan C C, Oliveira L C, Carmo I, et al. Rochas Ígneas do Bloco de Libra, Bacia de Santos[C]//49 Congresso Brasileiro de Geologia. Rio de Janeiro:[s.n.], 2018. [19] Nobakht M, Moghadam S,Gu Y. Mutual Interactions Between Crude Oil and CO2,Under Different Pressures[J]. Fluid Phase Equilibria, 2008, 265(2):94-103. [20] Huang B, Tian H, Huang H, et al. Origin and Accumulation of CO2 and Its Natural Displacement of Oils in the Continental Margin Basins, Northern South China Sea[J]. AAPG Bull, 2015, 99(7):1349-1369. [21] 高金玉,史卜庆,王林,等,CO2脱沥青作用形成重油油藏的一个实例[J]. 现代地质,2009,23(5):923-927. Gao Jinyu, Shi Buqing, Wang Lin, et al. A Typical Case of Heavy Oil Pool with the Origin of CO2 Deasphaltizing[J]. Geoscience, 2009,23(5):923-927. [22] 黄俨然,张枝焕,王安龙,等.黄桥地区深源CO2对二叠系-三叠系油气成藏的影响[J]. 天然气地球科学,2012, 23(3):520-525. Huang Yanran, Zhang Zhihuan, Wang Anlong, et al. Deep-Sourced CO2 Influence on Permian and Triassic Oil and Gas Accumulation in Huangqiao Region[J]. Natural Gas Geoscience, 2012, 23(3):520-525. [23] Liu Q, Zhu D, Jin Z, et al. Effects of Deep CO2 on Petroleum and Thermal Alteration:The Case of the Huangqiao Oil and Gas Field[J]. Chemical Geology, 2017, 469:214-229. [24] Miller J C. Geology of the North and South McCallum Anticlines, Jackson County, Colorado with Special Reference to Petroleum and Carbon Dioxide[R]. Washington:United States Department of the Interior Geological Survey, 1934. [25] 付晓飞,沙威,王磊, 等.松辽盆地幔源成因CO2气藏分布规律及控制因素[J].吉林大学学报(地球科学版), 2010,40(2):253-263. Fu Xiaofei, Sha Wei, Wang Lei, et al. Distribution Law of Mantle-Origin CO2 Gas Reservoirs and Its Controlling Factors in Songliao Basin[J]. Journal of Jilin University (Earth Science Edition), 2010,40(2):253-263. [26] Evain M, Afilhado A, Rigoti C, et al. Deep Structure of the Santos Basin-São Paulo Plateau System, SE Brazil[J]. Journal of Geophysical Research:Solid Earth, 2015,120(8):5401-5431. https://doi:10.1002/2014JB01156. [27] Jian Z, Maria J R O, Junfeng Z. et al. Fault Activity and Its Influences on Distribution of Igneous Rocks in Libra Block, Santos Basin:Semi-Quantitative to Quantitative Assessment of Fault Activity Based on High-Resolution 3D Seismic Data[C]//Offshore Technology Conference Brasil(OTC). Rio de Janeiro:[s.n.], 2019.https://onepetro.org/OTCBRASIL/proceedings-abstract/19OTCB/2-19OTCB/D021S016R005/181845 |
[1] | 单玄龙, 蔡壮, 郝国丽, 邹欣彤, 赵容生. 地球化学温标估算长白山地热系统热储温度[J]. 吉林大学学报(地球科学版), 2019, 49(3): 662-672. |
[2] | 陈鹏, 单玄龙, 郝国丽, 赵容生, 周健. 长白山仙人桥温泉断裂岩溶复合型地热成因模式[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1236-1246. |
[3] | 陶崇智,邓超,白国平,王大鹏,牛新杰,白建朴,郑妍. 巴西坎波斯盆地和桑托斯盆地油气分布差异及主控因素[J]. 吉林大学学报(地球科学版), 2013, 43(6): 1753-1761. |
[4] | 王祝文, 向旻, 刘菁华, 王晓丽, 张雪昂, 杨闯. 基于分数阶Fourier变换的声波测井全波列特征时频分析[J]. J4, 2012, 42(5): 1553-1559. |
[5] | 杨峰田, 庞忠和, 王彩会, 段忠丰, 罗璐, 李义曼. 苏北盆地老子山地热田成因模式[J]. J4, 2012, 42(2): 468-475. |
[6] | 张大权, 丰成友, 李大新, 陈毓川, 曾载淋. 江西省崇义县淘锡坑钨锡矿床流体包裹体特征及矿床成因[J]. J4, 2012, 42(2): 374-383. |
|