吉林大学学报(地球科学版) ›› 2017, Vol. 47 ›› Issue (4): 1236-1246.doi: 10.13278/j.cnki.jjuese.201704204

• 地质工程与环境工程 • 上一篇    下一篇

长白山仙人桥温泉断裂岩溶复合型地热成因模式

陈鹏, 单玄龙, 郝国丽, 赵容生, 周健   

  1. 吉林大学地球科学学院, 长春 130061
  • 收稿日期:2017-03-02 出版日期:2017-07-26 发布日期:2017-07-26
  • 通讯作者: 单玄龙(1969),男,教授,博士生导师,主要从事地热地质和石油天然气勘探与开发研究,E-mail:shanxl@jlu.edu.cn E-mail:shanxl@jlu.edu.cn
  • 作者简介:陈鹏(1993),男,硕士研究生,主要从事地热地质方面研究,E-mail:chenpeng2016@qq.com
  • 基金资助:
    国家自然科学基金项目(41430322,41472304)

Faults and Karsts Controlled Geothermal Genesis Model of Xianrenqiao Hot Spring in Changbai Mountain

Chen Peng, Shan Xuanlong, Hao Guoli, Zhao Rongsheng, Zhou Jian   

  1. College of Earth Sciences, Jilin University, Changchun 130061, China
  • Received:2017-03-02 Online:2017-07-26 Published:2017-07-26
  • Supported by:
    Supported by National Natural Science Foundation of China(41430322,41472304)

摘要: 长白山仙人桥温泉是我国著名的矿泉水疗养旅游胜地,阐明其成因模式对于温泉区的进一步开发和热水资源的可持续利用具有一定的指导意义。笔者采用地质学、水文地质学和地球物理学结合的方法对其进行了系统研究。结果表明,该区属中低温对流型地热系统,地热成因模式为断裂岩溶复合型。热储层主要为古生界寒武系和奥陶系灰岩,灰岩本身的孔渗条件较差,但后期发育的构造裂缝和溶蚀裂缝却极大地改善了热储层的储集性能;盖层主要为中生界侏罗系安山岩和安山质火山碎屑岩,封闭性较好。长白山一带的大气降水沿侧向断裂和溶蚀裂缝渗入热储层中成为地下水;然后经正常大地热流加热成为地热水,热储温度为89~118 ℃,循环深度为2 853~3 820 m;最终地热水在区内NE向与NW向断裂交汇处富集并沿导水断裂上涌形成温泉。因此,该区断裂交汇和岩溶发育的部位是地热勘探的有利部位。该结论为该区类似地热资源的勘探提供了理论依据。

关键词: 长白山仙人桥温泉, 断裂, 岩溶, 成因模式, 中低温对流型地热系统

Abstract: Xianrenqiao hot spring is a great sparesort of China. We conducted a systematic study to explore the genesis mechanism through the methods of geology, hydrogeology and geophysics, for the purpose of further exploration and sustainable development of geothermal resources. Results show that this area belongs to a low-medium temperature geothermal system of convective type, with a composite geothermal genesis model of faults and karsts. The thermal reservoir was originally Paleozoic Cambrian and Ordovician limestone with poor porosity and permeability, but the reservoir property was greatly improved by the structural and dissolved fractures that formed in later period. The cap rocks are mainly Mesozoic Jurassic andesite and andesitic volcaniclastic rocks with strong sealing capability. The hot spring area origins mainly from the rainfall recharged in the area of Changbai Mountain, seeps into the underground thermal reservoir along the lateral faults and karst fractures; Then the groundwater is gradually heated by the normal heat flow during circulating, forming the geothermal water. The thermal reservoir temperature has been estimated to be 89-118 ℃, with a water circulation depth of 2 853-3 820 m; Finally the geothermal water flows upward in the intersection zones of the NE-and NW-striking faults, forming the Xianrenqiao hot spring. In a word, the area that has intersecting faults and abundant karsts is a favorable and prospective area for the exploration of geothermal water. This conclusion provides a theoretical reference for the exploration of similar geothermal resources.

Key words: Xianrenqiao hot spring in Changbai Mountain, faults, karsts, genesis model, low-medium temperature geothermal system of convective type

中图分类号: 

  • P314
[1] 汪集旸,龚宇烈,马伟斌,等. 我国发展地热能面临问题的分析及建议[C]//首届中国工程院/国家能源局能源论坛论文集. 北京: 化学工业出版社, 2010: 627-630. Wang Jiyang,Gong Yulie,Ma Weibin,et al. Analysis and Suggestion on the Main Problems of Geothermal Energy Developed in China[C]//The 1st Energy Forum of Chinese Academy of Engineering and National Energy Administration. Beijing: Chemical Industry Press, 2010: 627-630.
[2] Mongillo M A,Axelsson G. Preface to Geothermics Special Issue on Sustainable Geothermal Utilization[J]. Fuel and Energy Abstracts, 2010, 39(4): 279-282.
[3] Barbier E. Nature and Technology of Geothermal Energy:A Review[J]. Renewable and Sustainable Energy Reviews, 1997, 1(1): 1-69.
[4] 熊亮萍,张菊明. 热流的折射和再分配的数学模拟[J]. 地质科学, 1984, 19(4): 445-454. Xiong Liangping,Zhang Juming. Mathematical Simulation of Refract and Redistribution of Heat Flow[J]. Chinese Journal of Geology, 1984, 19(4): 445-454.
[5] 汪集旸,熊亮萍,庞忠和. 中低温对流型地热系统[M]. 北京: 科学出版社, 1993: 1-207. Wang Jiyang,Xiong Liangping,Pang Zhonghe. Low-Medium Temperature Geothermal System of Convective Type[M]. Beijing: Science Press, 1993: 1-207.
[6] 张承泽,赵清华,杨益国,等. 吉林省抚松县仙人桥地热资源调查评价报告[R]. 长春: 吉林省地质环境监测总站, 2000. Zhang Chengze,Zhao Qinghua,Yang Yiguo,et al. Report on Geothermal Exploration and Evalution in Xianrenqiao Spring, Fusong County, Jilin Province[R]. Changchun: Monitoring Station of Geological Evironment, Jilin Province, 2000.
[7] 苏秀杰,孙野. 抚松县仙人桥热矿泉水特征与开发利用前景[J]. 吉林地质, 2006, 25(4): 21-25. Su Xiujie,Sun Ye. Xianrenqiao Thermal Mineral Water Characteristics and Development and Using Prospects, Fusong County, Jilin Province[J]. Jilin Geology, 2006, 25(4): 21-25.
[8] 闫佰忠. 长白山玄武岩区地热水资源成因机制研究[D]. 长春: 吉林大学, 2016. Yan Baizhong. Study on the Formation Mechanism of Geothermal Water Resources in Changbai Mountain Basalt Area[D]. Changchun: Jilin University, 2016.
[9] 潘桂棠,肖庆辉,陆松年,等. 中国大地构造单元划分[J]. 中国地质, 2009, 36(1): 1-28. Pan Guitang,Xiao Qinghui,Lu Songnian,et al. Subdivision of Tectonic Units in China[J]. Geology in China, 2009, 36(1): 1-28.
[10] 金伯禄,张希友. 长白山火山地质研究[M]. 延吉: 东北朝鲜民族教育出版社, 1994: 1-223. Jin Bolu,Zhang Xiyou. Researching Volcanic Geology in Mount Changbai[M]. Yanji: Northeast Korea Nationality Education Press, 1994: 1-223.
[11] 吉林省地质矿产局. 吉林省区域地质志[M]. 北京: 地质出版社, 1988: 313-314. Jilin Bureau of Geology and Mineral Resources. Regional Geology of Jilin Province[M]. Beijing: Geological Publishing House, 1988: 313-314.
[12] Zhu Shifa. Genetic Mechanism of Dolomitization in Fengcheng Formation in the Wuxia Area of Junggar Basin, China [J]. Acta Geologica Sinica, 2012, 86(2): 447-461.
[13] Gale J F W,Laubach S E,Marrett R A,et al. Predicting and Characterizing Fractures in Dolostone Reservoirs: Using the Link Between Diagenesis and Fracturing[J]. Geological Society London Special Publications, 2004, 235(1): 177-192.
[14] 艾合买提江·阿不都热和曼,钟建华,李阳,等. 碳酸盐岩裂缝与岩溶作用研究[J]. 地质论评, 2008, 54(4): 485-493. Ahmatjan Abdurahman,Zhong Jianhua,Li Yang,et al. Study on Effect Between Karstification and Fracture in Carbonate Rocks[J]. Geological Review, 2008, 54(4): 485-493.
[15] Stowell J F W. Characterization of Opening-Mode Fracture Systems in the Austin Chalk[J]. Gulf Coast Association of Geological Societies, 2001, 51: 313-319.
[16] Guidry S A,Grasmueck M,Carpenter D G,et al. Karst and Early Fracture Networks in Carbonates, Turks and Caicos Islands, British West Indies[J]. Journal of Sedimentary Research, 2007, 77(6): 508-524.
[17] 樊祺诚. 长白山火山的历史与演化[J]. 资源调查与环境, 2008, 29(3): 196-203. Fan Qicheng. History and Evolution of Changbaishan Volcano[J]. Resources Survey and Environment, 2008, 29(3): 196-203.
[18] 许军强. 长白山地表温度反演与地热分布特征研究[D]. 长春: 吉林大学, 2007. Xu Junqiang. A Study on Land Surface Temperature Retrieval and the Geothermal Distribution Characteristics in Changbai Mountains[D]. Changchun: Jilin University, 2007.
[19] 王璞珺,衣健,陈崇阳,等. 火山地层学与火山架构: 以长白山火山为例[J]. 吉林大学学报(地球科学版), 2013, 43(2): 319-339. Wang Pujun,Yi Jian,Chen Chongyang,et al. Volcanostratigraphy and Volcanic Architecture of the Changbaishan Volcanos, NE China[J]. Journal of Jilin University(Earth Science Edition), 2013, 43(2): 319-339.
[20] 姜光政,高堋,饶松,等. 中国大陆地区大地热流数据汇编:第四版[J]. 地球物理学报, 2016, 59(8): 2892-2910. Jiang Guangzheng,Gao Peng,Rao Song,et al. Compilation of Heat Flow Data in the China Continental Area: 4th Edition[J]. Chinese Journal of Geophysics, 2016, 59(8): 2892-2910.
[21] 段忠丰,庞忠和,杨峰田. 华北地区煤系地层岩石热导率特征及对热害的影响[J]. 煤炭科学技术, 2013, 41(8): 15-17. Duan Zhongfeng,Pang Zhonghe,Yang Fengtian. Features of Coal-Bearing Strata Rock Thermal Conductivity and Influence on Heat Hazard in North China[J]. Coal Science and Technology, 2013, 41(8): 15-17.
[22] 汪洋,汪集旸,邓晋福,等. 中国大陆地壳和岩石圈铀、钍、钾丰度的大地热流约束[J]. 地球物理学进展, 2001, 16(3): 21-30. Wang Yang,Wang Jiyang,Deng Jinfu,et al. Heat Flow Constraint on Abundance of Uranium, Thorium and Potassium in Crust and Lithosphere of Continental Area of China[J]. Progress in Geophysics, 2001, 16(3): 21-30.
[23] 杨峰田. 深层地热资源成因与潜力评价: 以苏北盆地为例[D]. 北京: 中国科学院研究生院, 2011: 1-19. Yang Fengtian. Evaluation to the Causes and Potential of Deep Geothermal Resources: A Case Study of Subei Basin[D]. Beijing: Institute of Geology and Geophysics, Chinese Academy of Sciences, 2011: 1-19.
[24] Pang Z. pH Dependant Isotope Variations in Arc-Type Geothermal Waters: New Insights into Their Origins[J]. Journal of Geochemical Exploration, 2006, 89(1): 306-308.
[25] 王凤生. 吉林省大气降水氢氧同位素浓度场时空展布及其环境效应[J]. 吉林地质, 1997, 16(1): 52-57. Wang Fengsheng. The Law of O and H Isotopic Concentration Field on the Time-Space Distribution and Environmental Effect of Atmospheric Water in Jilin Province[J]. Jilin Geology, 1997, 16(1): 52-57.
[26] Paul M. A Simple Model of Gravitationally-Driven Water Flow in a Semicircular Aquifer to Estimate Geothermal Power Potential: Examples from Arizona and Colorado [J]. Geothermics, 2016, 64: 28-41.
[27] 杨长福,徐世浙. 国外大地电磁研究现状[J]. 物探与化探, 2005, 29(3): 243-247. Yang Changfu,Xu Shizhe. The Present Situation of Magnetotelluric Researches Abroad[J]. Geophysical and Geochemical Exploration, 2005, 29(3): 243-247.
[28] 祝杰. 可控源音频大地电磁法在地热勘查中的应用研究[D]. 成都: 成都理工大学, 2012. Zhu Jie. The Applied Technology of Controlled Source Audio Magnetotelluric on Geothermal Field[D]. Chengdu: Chengdu University of Technology, 2012.
[29] 王显祥,底青云,唐静,等. 三维地电结构下CSAMT分辨能力研究[J]. 地球物理学进展, 2014, 29(5): 2258-2265. Wang Xianxiang,Di Qingyun,Tang Jing,et al. CSAMT Resolution in 3D Geoelectric Structures[J]. Progress in Geophysics, 2014, 29(5): 2258-2265.
[30] 底青云,王若. 可控源音频大地电磁数据正反演及方法应用[M]. 北京: 科学出版社, 2008. Di Qingyun,Wang Ruo. CSAMT Forward Modeling and Inversion and Its Application[M]. Beijing: Science Press, 2008.
[31] Fournier R O,Fournier J J. The Solubility of Amorphous Silica at High Temperatures and High Pressures[J]. American Mineralogist, 1977, 62(9): 1052.
[32] Fournier R O. Application of Water Geochemistry to Geothermal Exploration and Reservoir Engineering[M]. New York: Wiley, 1981, 113.
[33] 陈墨香. 华北地热[M]. 北京: 科学出版社, 1988: 103. Chen Moxiang. Geothermics of North China[M]. Beijing: Science Press, 1988: 103.
[34] Arnorsson S. Isotopic and Chemical Techniques in Geothermal Exploration, Development and Use: Sampling Methods, Data Handling, Interpretation[M]. Vienna: International Atomic Energy Agency, 2000: 1-351.
[1] 郑国磊, 徐新学, 李世斌, 袁航, 马为, 叶青. 天津市重力数据反演解释[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1221-1230.
[2] 束龙仓, 李姝蕾, 王松, 克热木·阿布都米吉提, 鲁程鹏, 李砚阁, 李伟. 岩溶水源地安全供水的风险评价指标筛选——以娘子关泉水源地为例[J]. 吉林大学学报(地球科学版), 2018, 48(3): 805-814.
[3] 马国庆, 孟庆发, 黄大年. 基于重力异常的松辽盆地构造特征识别[J]. 吉林大学学报(地球科学版), 2018, 48(2): 507-516.
[4] 朱晓颖, 杨海, 匡星涛, 彭巍巍, 张洪瑞. 新疆东昆仑-阿尔金地区航磁反映的断裂构造特征[J]. 吉林大学学报(地球科学版), 2018, 48(2): 461-473.
[5] 杨德相, 付广, 孙同文, 李熹微, 姜海燕, 刘滨莹. 油源断裂优势通道输导油气能力综合评价方法及其应用[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1678-1686.
[6] 田亚, 杜治利, 刘宝宪, 杜小弟, 陈夷. 鄂尔多斯盆地东南部宜川黄龙地区奥陶系风化壳储层发育特征[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1620-1630.
[7] 展铭望, 付广, 仇翠莹, 杨在增. 一种新的断裂破坏泥岩盖层程度的综合研究方法[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1687-1694.
[8] 牛子铖, 柳广第, 国殿斌, 王朋, 张家舲, 赵其磊. 查干凹陷中央构造带不同断阶带原油成熟度特征差异及其成因分析[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1047-1059.
[9] 赵小二, 常勇, 彭伏, 吴吉春. 水箱-管道系统溶质运移实验研究及其岩溶水文地质意义[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1219-1228.
[10] 王伟, 付广, 胡欣蕾. 断裂对盖层封气综合能力破坏程度的研究方法及其应用[J]. 吉林大学学报(地球科学版), 2017, 47(3): 685-693.
[11] 张博为, 付广, 张居和, 胡明, 刘峻桥, 王浩然. 油源断裂转换带裂缝发育及其对油气控制作用——以冀中坳陷文安斜坡议论堡地区沙二段为例[J]. 吉林大学学报(地球科学版), 2017, 47(2): 370-381.
[12] 刘锦, 刘正宏, 赵辰, 彭游博, 王楚杰, 杨仲杰, 豆世勇. 辽宁清河断裂以北新太古代变质表壳岩的发现及其地质意义[J]. 吉林大学学报(地球科学版), 2017, 47(2): 497-510.
[13] 刘敬寿, 戴俊生, 徐珂, 张艺, 丁文龙. 构造裂缝产状演化规律表征方法及其应用[J]. 吉林大学学报(地球科学版), 2017, 47(1): 84-94.
[14] 宋洋, 谷洪彪, 李海君, 迟宝明. 断裂两盘井水位同震响应特征对比分析——以北京八宝山断裂带中段大灰厂两观测井为例[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1815-1822.
[15] 林承焰, 曹铮, 任丽华, 张昌盛, 范瑞峰, 王叶, 邢新亚, 马晓兰. 松辽盆地南部大情字井向斜区葡萄花油层石油富集规律及成藏模式[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1598-1610.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!