吉林大学学报(地球科学版) ›› 2023, Vol. 53 ›› Issue (5): 1602-1610.doi: 10.13278/j.cnki.jjuese.20220258

• 地球探测与信息技术 • 上一篇    下一篇

基于CV-XGBoost的水下分流河道砂体厚度预测及应用

白青林1,刘烜良2,张军华2,王福金1,刘中伟1,焦红岩1   

  1. 1.中国石化胜利油田分公司现河采油厂,山东东营257068

    2.中国石油大学(华东)地球科学与技术学院,山东青岛266580

  • 出版日期:2023-09-26 发布日期:2023-11-04
  • 基金资助:

    国家自然科学基金项目(42072169);胜利油田科研攻关项目(YKY2106)


Sand Body Thickness Prediction of Underwater Distributary Channel Based on CV-XGBoost Method

Bai Qinglin1, Liu Xuanliang2, Zhang Junhua2, Wang Fujin1, Liu Zhongwei1, Jiao Hongyan1   

  1. 1. Xianhe Oil Production Plant, Shengli Oilfield Company, SINOPEC, Dongying 257068, Shandong, China

    2. School of Geosciences, China University of Petroleum, Qingdao 266580, Shandong, China

  • Online:2023-09-26 Published:2023-11-04
  • Supported by:
    Supported by the National Natural Science Foundation of China (42072169) and the Project of Shengli Oilfield (YKY2106)

摘要:

针对水下分流河道砂体单层厚度薄,叠置、交叉严重,横向非均质性强,井震关系一致性不好等问题,研究了一种基于交叉验证的极限梯度提升(CV-XGBoost)储层厚度预测方法。先用相关分析与多重共线性评价去除冗余属性,然后进行模型训练与参数集寻优,最后用验证集进行厚度预测。结果表明:1)对于较少样本的储层预测,有必要做交叉验证,以提高储层预测精度;2)XGBoost用具有二阶偏导的正则项来控制模型收敛进度,预测精度好于常规的LASSO(least absolute shrinkage and selection operator)回归、GBDT(gradient boosting decision tree)和SVM(support vector machine)方法;3)验证集占比较低的储层预测可用来了解砂体宏观展布,较高的验证集占比则有助于提高砂体描述的精度;4)本研究区平均振幅、平均能量、弧长、主频为厚度预测贡献度较大的属性。

关键词: 交叉验证, 极限梯度提升, 属性优化, 砂体厚度预测

Abstract:

Aiming at the problems of underwater distributary channel sand body, such as thin single layer thickness, serious superimposition and crossing, strong lateral heterogeneity, and poor consistency of well seismic relationship, this study presents a prediction method of CV-XGBoost reservoir thickness based on cross validation. Firstly, correlation analysis and multicollinearity evaluation are used to remove redundant attributes, then the model training and parameter set optimization are carried out, and finally thickness prediction is carried out with verification set. The results show that: 1) For reservoir prediction with few samples, it is necessary to do cross validation to improve the accuracy of reservoir prediction; 2) XGBoost uses a regular term with the second order partial derivative to control the convergence progress of the model, and its prediction accuracy is better than that of conventional LASSO (least absolute shrinkage and selection operator) regression, GBDT (gradient boosting decision tree) and SVM (support vector machine) methods; 3) The reservoir prediction results with low verification set ratio can be used to understand the macro distribution of sand body, and the higher verification set ratio is helpful to improve the accuracy of sand body description; 4) The average amplitude, average energy, arc length and dominant frequency in this study area are the attributes that contribute greatly to thickness prediction.

Key words: cross validation, XGBoost, attribute optimization, sand body thickness prediction

[1] 于子望, 郑天琪, 程钰翔. 基于PSO-XGB混合优化技术的浅层地下温度预测:以长春市为例[J]. 吉林大学学报(地球科学版), 2023, 53(6): 1907-1916.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 程立人,张予杰,张以春. 西藏申扎地区奥陶纪鹦鹉螺化石[J]. J4, 2005, 35(03): 273 -0282 .
[2] 李 秉 成. 陕西富平全新世古气候的初步研究[J]. J4, 2005, 35(03): 291 -0295 .
[3] 和钟铧,杨德明,王天武,郑常青. 冈底斯带巴嘎区二云母花岗岩SHRIMP锆石U-Pb定年[J]. J4, 2005, 35(03): 302 -0307 .
[4] 陈 力,佴 磊,王秀范,李 金. 绥中某电力设备站场区地震危险性分析[J]. J4, 2005, 35(05): 641 -645 .
[5] 纪宏金,孙丰月,陈满,胡大千,时艳香,潘向清. 胶东地区裸露含金构造的地球化学评价[J]. J4, 2005, 35(03): 308 -0312 .
[6] 初凤友,孙国胜,李晓敏,马维林,赵宏樵. 中太平洋海山富钴结壳生长习性及控制因素[J]. J4, 2005, 35(03): 320 -0325 .
[7] 李斌,孟自芳,李相博,卢红选,郑民. 泌阳凹陷下第三系构造特征与沉积体系[J]. J4, 2005, 35(03): 332 -0339 .
[8] 李涛, 吴胜军,蔡述明,薛怀平,YASUNORI Nakayama. 涨渡湖通江前后调蓄能力模拟分析[J]. J4, 2005, 35(03): 351 -0355 .
[9] 旷理雄,郭建华,梅廉夫,童小兰,杨丽. 从油气勘探的角度论博格达山的隆升[J]. J4, 2005, 35(03): 346 -0350 .
[10] 章光新,邓伟,何岩,RAMSIS Salama. 水文响应单元法在盐渍化风险评价中的应用[J]. J4, 2005, 35(03): 356 -0360 .