高寒矿区,气象要素,集合经验模态分解,Morlet小波函数,降水,气温,蒸发
," /> 高寒矿区,气象要素,集合经验模态分解,Morlet小波函数,降水,气温,蒸发
,"/> <span>大柴旦矿区生态环境影响要素变化特征</span>

吉林大学学报(地球科学版) ›› 2024, Vol. 54 ›› Issue (5): 1675-1684.doi: 10.13278/j.cnki.jjuese.20230027

• 地质工程与环境工程 • 上一篇    下一篇

大柴旦矿区生态环境影响要素变化特征

顾小凡1,2,石建省3,陈宝辉4,常亮2,犹香智2,林川5   

  1. 1.中国地质科学院,北京100037

    2.中国地质调查局西安地质调查中心,西安710054

    3.中国自然资源航空物探遥感中心,北京100083

    4.中煤科工集团西安研究院有限公司,西安710054

    5.北京天地华泰矿业管理股份有限公司,北京100020

  • 出版日期:2024-09-26 发布日期:2024-10-12
  • 基金资助:

    国家自然科学基金项目(42177346);中国地质调查局地质调查项目(DD20160291,DD20221751,DD20230082)


Variation Characteristics of Meteorological Elements Influencing Ecosystem Environment in Da Qaidam Mining Area

Gu Xiaofan1,2, Shi Jiansheng3, Chen Baohui4, Chang Liang2, You Xiangzhi2, Lin Chuan5

#br#   

  1. 1. Chinese Academy of Geological Sciences, Beijing 100037, China

    2. Xi’an Center of China Geological Survey, Xi’an 710054, China

    3. China Aero Geophysical Survey and Remote Sensing Center for Natural Resource, Beijing 100083, China

    4. Xi’an Research Institute, China Coal Technology & Engineering Group Corp, Xi’an 710054, China

    5. Beijing Tiandi Huatai Mining Management Co., Ltd., Beijing 100020, China

  • Online:2024-09-26 Published:2024-10-12
  • Supported by:
    Supported by the National Natural Science Foundation of China (42177346) and the Project of China Geological Survey (DD20160291, DD20221751, DD20230082)

摘要:

气象要素变化对矿区生态环境的影响极为重要,尤其是在我国青藏高原寒旱区,全面系统地了解历史气象要素变化特征对高寒矿区生态环境保护具有指导作用。本研究首先基于青藏高原大柴旦矿区19562022年的逐月降水、气温、蒸发数据,采用线性倾向估计法、集合经验模态分解(EEMD)、Morlet小波变换等方法对大柴旦地区的降水、气温、蒸发等气象要素的变化趋势进行了全面分析研究;然后选取三期空间分辨率为30 m的 Landsat卫星数据,从卫星图像中计算了归一化差异植被指数(INDV)。结果表明:大柴旦矿区气候呈现暖湿化态势,在此因素驱动下,降水量呈现轻微增加趋势,气温呈现明显增高趋势,蒸发量呈明显减小趋势;降水量和气温序列没有突变点,而蒸发量在1979年存在突变,在19561979年蒸发量缓慢增加,在19792022年缓慢减小;降水量在20002016年具有显著12个月的震荡周期,气温和蒸发量在整个时间尺度上都具有12个月的震荡周期;植被多集中分布在水体附近,研究区内整体呈现覆盖增加、生长活动增强趋势。预测大柴旦矿区未来几年降水量仍处于增加状态,温度处于增高阶段,年蒸发量将处于偏少期,植被生长活动整体呈增强趋势。


关键词: 高寒矿区')">

高寒矿区, 气象要素, 集合经验模态分解, Morlet小波函数, 降水, 气温, 蒸发

Abstract:

Changes in meteorological elements have a highly important impact to the ecological environment of the mining area, especially in the cold and arid region of the Qinghai-Tibet Plateau, China. A comprehensive and systematic understanding of characteristics of historical meteorological changes plays a guiding role in the ecological environment protection for alpine mining areas. In this study, trends of precipitation, air temperature, and evaporation were comprehensively analyzed by linear tendency estimation, the ensemble empirical mode decomposition (EEMD), and Morlet wavelet analysis using monthly data from 1956 to 2022 in the Da Qaidam mining area of the Qinghai-Tibet Plateau. The normalized difference vegetation index (INDV) was extracted from three phases of Landsat satellite images with a spatial resolution of 30 m. Results showed that the climate in the study area developed towards warming and humidification with a slightly increasing trend of precipitation, a significantly trend of temperature, and a markedly decreasing trend of evaporation. No abrupt changes points were detected for precipitation and temperature, but a sudden change in evaporation existed in 1979. Evaporation increased slowly from 1956 to 1979, and decreased slowly from 1979 to 2022. Precipitation had a significant 12-month oscillation period from 2000 to 2016, while temperature and evaporation had a 12-month oscillation period throughout the entire study period. INDV data indicated that vegetation was mostly concentrated near the water bodies, and the coverage expanded and the growth activity enhanced over time in the entire study area. It is predicted that precipitation and temperature would continuously increase and annual evaporation would be in a relatively small period. The vegetation growth activity would be strengthened for next few years in the Da Qaidam mining area.

Key words: high-cold mining area, meteorological elements, EEMD, Morlet wavelet function, precipitation, air temperature, evaporation

中图分类号: 

  • X24
[1] 束龙仓, 张彤豪, 澈丽木格, 刘圣昱, 刘波. 降水和地下水开采对通辽市科尔沁区潜水位的影响[J]. 吉林大学学报(地球科学版), 2024, 54(3): 954-966.
[2] 骆祖江, 成磊, 张兴旺, 于丹丹, 徐成华. 悬挂式止水帷幕深基坑降水方案模拟优化[J]. 吉林大学学报(地球科学版), 2022, 52(6): 1946-1956.
[3] 危润初, 张豪, 龙秋波, 彭向训, 周升健.

湖南紫鹊界梯田自流灌溉系统降水条件 [J]. 吉林大学学报(地球科学版), 2022, 52(3): 967-978.

[4] 洪梅, 林豪栋. CMADS降水数据在温带东亚季风气候区水库控制流域适用性——以潮白河、东洋河流域为例[J]. 吉林大学学报(地球科学版), 2021, 51(3): 833-842.
[5] 王凤艳, 王梓铭, 王明常, 姜琦刚, 杨天亮, 张馨月, 赵明宇. 中蒙俄经济走廊沿海与内陆NDVI分布特征[J]. 吉林大学学报(地球科学版), 2021, 51(3): 864-876.
[6] 王利花, 周云轩. 大通站水沙关系演变驱动因素分析[J]. 吉林大学学报(地球科学版), 2018, 48(1): 226-233.
[7] 张施跃, 束龙仓, 闵星, 胡慧杰, 邹志科. 基于土地利用类型的大气降水入渗补给量计算[J]. 吉林大学学报(地球科学版), 2017, 47(3): 860-867.
[8] 徐则民, 梅雪峰, 王礼荣, 张有为, 曾强, 郭丽丽. 滑坡预警中的降水时空变异性——以云南头寨沟为例[J]. 吉林大学学报(地球科学版), 2017, 47(1): 154-162.
[9] 牛军宜, 吴泽宁, 贾虎. 降水丰枯变化和产流条件改变对汾河径流影响的定量研究[J]. 吉林大学学报(地球科学版), 2016, 46(3): 814-823.
[10] 卢文喜, 安永凯, 宋文博, 于婷. 吉林西部季节性气象干旱的时空演化特征[J]. 吉林大学学报(地球科学版), 2016, 46(2): 543-551.
[11] 危润初, 肖长来, 方樟. 黑龙江建三江地区地下水动态趋势突变点分析[J]. 吉林大学学报(地球科学版), 2016, 46(1): 202-210.
[12] 张茜,梁秀娟,杜川. 基于无偏灰色马尔可夫链的吉林省降水量预测[J]. 吉林大学学报(地球科学版), 2014, 44(6): 1973-1979.
[13] 危润初, 肖长来, 张余庆, 梁秀娟. 中国降水混沌识别及空间聚类[J]. 吉林大学学报(地球科学版), 2014, 44(2): 626-635.
[14] 陈兴贤,骆祖江,安晓宇,谈金忠,田开洋. 深基坑降水三维变参数非稳定渗流与地面沉降耦合模型[J]. 吉林大学学报(地球科学版), 2013, 43(5): 1572-1578.
[15] 陈社明,卢文喜,罗建男,康柱. 吉林西部气象干旱的多标度分形特征[J]. 吉林大学学报(地球科学版), 2013, 43(1): 245-250.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!