吉林大学学报(地球科学版) ›› 2018, Vol. 48 ›› Issue (1): 226-233.doi: 10.13278/j.cnki.jjuese.20160365

• 地质工程与环境工程 • 上一篇    下一篇

大通站水沙关系演变驱动因素分析

王利花1, 周云轩2   

  1. 1. 成都信息工程大学资源环境学院, 成都 610225;
    2. 华东师范大学河口海岸学国家重点实验室, 上海 200062
  • 收稿日期:2017-05-26 出版日期:2018-01-26 发布日期:2018-01-26
  • 通讯作者: 周云轩(1962-),男,讲授,博士生导师,主要从事长江河口资源与环境、海洋及海岸带遥感等方面的研究,E-mail:zhouyx@sklec.ecnu.edu.cn E-mail:zhouyx@sklec.ecnu.edu.cn
  • 作者简介:王利花(1983-),女,讲师,博士,主要从事长江河口水文特征、海洋及海岸带微波遥感等方面的研究,E-mail:wanglh@cuit.edu.cn
  • 基金资助:
    国家自然科学基金项目(41706196, 41476151);成都信息工程大学科研基金项目(KYTZ201513)

Driving Factors Analysis on Evolution of Water and Sediment at Datong Station

Wang Lihua1, Zhou Yunxuan2   

  1. 1. College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, China;
    2. State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
  • Received:2017-05-26 Online:2018-01-26 Published:2018-01-26
  • Supported by:
    Supported by National Natural Science Foundation of China (41706196, 41476151) and Scientific Research Foundation of CUIT (KYTZ201513)

摘要: 大通水文站是长江进入河口的第一个关键界面,其水沙关系的变化不但直接影响河流本身的发展演变,也影响着河口三角洲的发育过程。深入研究大通站水沙关系的驱动因素,有助于更好地认识长江流域的输沙规律,可为流域地貌演变和对人类活动响应的深入研究提供科学依据。本文基于数理统计方法,重点从降水变化、径流变化、水利水土工程等方面定性定量地研究了气候变化和人类活动对大通站水沙演变过程的影响,结果表明:1954—2000年间降水量和输沙量变化特征较为一致,说明气候变化在一定程度上影响着大通站泥沙输移的变化过程,其更多地体现在对泥沙输移长期性变化的影响方面;2001—2010年输沙量急剧下降,大型水利工程的实施等人类活动对泥沙输移的影响是近10年来大通站入海泥沙急剧变化的直接诱因和主要原因,其主要体现在短时间尺度上。

关键词: 大通站, 水沙, 降水, 水利工程, 气候变化, 人类活动

Abstract: Datong hydrological station is the first key interface to enter the Yangtze estuary, thereby, the relationship between hydrology and sediment directly affects not only the spatial and temporal distribution of suspended sediment in the Yangtze estuary,but also the evolution of Yangtze delta. Further research on the driving factors of the relationship between water and sediment at Datong Station will be helpful to better understand the pattern of sediment transport in the Yangtze River basin, and to provide a scientific basis for an in-depth study on the evolution of the basin landscape and its response to human activities. Based on the mathematical statistics method, we qualitatively and quantitatively studied the effects of climate change and human activities on water and sediment characteristics at Datong Station from the precipitation and runoff change, water and soil engineering and so on. The results indicate that the climate change affects the change of water and sediment transport to a certain extent, and more reflects in the effect of long-term changes in sediment transport. However, the influence of large water conservancy and other human activities on sediment transport reflects mainly in the trend and time points of abrupt change. Human activities are the direct and main cause for water and sediment changes at Datong Station.

Key words: Datong Station, water and sediment, precipitation, water conservancy project, climate change, human activity

中图分类号: 

  • P942
[1] Walling D E, Fang D. RecentTrends in the Suspended Sediment Loads of the World's Rivers[J]. Global and Planetary Change, 2003, 39(1/2): 111-126.
[2] Chakrapani G J. Factors Controlling Variations in River Sediment Loads[J]. Current Science, 2005, 88(4): 569-575.
[3] 戴仕宝. 中国流域自然作用和人类活动对(河流)入海泥沙的影响[D].上海:华东师范大学,2006. Dai Shibao. Impacts of Natural Process and Human Activities on River Sediment Supply to the Sea and Its Environmental Significance, China: With the Emphasis on Yangtze River[D]. Shanghai: East China Normal University, 2006.
[4] 胡春宏,王延贵,张燕菁,等. 中国江河水沙变化趋势与主要影响因素[J]. 水科学进展,2010,21(4): 524-532. Hu Chunhong, Wang Yangui, Zhang Yanjing, et al.Variation Tendency of Runoff and Sediment Load in China Major Rivers and Its Causes[J]. Advances in Water Science, 2010, 21(4): 524-532.
[5] 危润初,肖长来,方樟. 黑龙江建三江地区地下水动态趋势突变点分析[J]. 吉林大学学报(地球科学版),2016,46(1):202-210. Wei Runchu, Xiao Changlai, Fang Zhang. Trends Mutation Nodes of Groundwater Dynamic in Jiansanjiang Area of Heilongjiang Province[J]. Journal of Jilin University(Earth Science Edition), 2016, 46(1):202-210.
[6] Serrano A, Mateos V L, Garcia J A. Trend Analysis of Monthly Precipitation over the Iberian Peninsula for the Period 1921-1995[J]. Physics and Chemistry of the Earth:Part B:Hydrology Oceans and Atmosphere, 1999, 24(1/2): 85-90.
[7] 戴仕宝,杨世伦,郜昂,等.近50年来中国主要河流入海泥沙变化[J].泥沙研究,2007(4):49-58. Dai Shibao, Yang Shilun, Gao Ang, et al. Trend of Sediment Flux of Main Rivers in China in the Past 50 Years[J]. Journal of Sediment Research, 2007(4):49-58.
[8] 王利花. 长江河口及邻近海域表层水体关键动力参数的遥感反演研究及应用[D].上海:华东师范大学, 2014 Wang Lihua. Remote Sensing Retrieval Study and Application of the Surface Key Kinetic Parameters in the Yangtze Estuary and Its Adjacent Waters[D]. Shanghai: East China Normal University, 2014.
[9] 史德明. 长江流域水土流失及其防治[J]. 长江流域资源与环境,1992, 1(1): 62-70. Shi Deming. Soil and Water Loss and Its Control in the Yangtze River Basin[J]. Resources and Environment in the Yangtze Valley, 1992, 1(1): 62-70.
[10] 史立人. 长江流域水土流失历史发展过程探讨[J]. 水土保持通报,2002, 22(5):1-4. Shi Liren. A Survey of Historical Expansion Process of Soil Erosion in the Changjiang River Valley[J]. Bulletin of Soil and Water Conservation, 2002, 22(5):1-4.
[11] 廖纯艳. 三峡库区水土流失防治的实践与发展对策[J].中国水土保持,2009(1):1-3. Liao Chunyan. Practice and Development Countermeasures of Soil Erosion Control in Three Gorges Reservoir Area[J]. Soil and Water Conservation in China, 2009(1):1-3.
[12] 张信宝,文安邦. 长江上游干流和支流河流泥沙近期变化及其原因[J]. 水利学报,2002(4): 56-59. Zhang Xinbao, Wen Anbang. Variation of Sediment in Upper Stream of Yangtze River and Its Tributary[J].Journal of Hydraulic Engineering, 2002(4): 56-59.
[13] 师哲,龙超平. 葛洲坝枢纽下游河段河床演变分析[J]. 长江科学院院报,2000,17(1): 13-16. Shi Zhe, Long Chaoping. Analysis on Fluvial Process of Downstream Researches of Gezhouba Project[J]. Journal of Yangtze River Scientific Research Institute, 2000, 17(1): 13-16.
[14] 水利部长江水利委员会.长江泥沙公报[M]. 武汉:长江出版社,2012. Changjiang Water Conservancy Committee, Ministry of Water Resources. Yangtze River Sediment Bulletin[M]. Wuhan: Changjiang Press, 2012.
[15] 应铭,李九发,万新宁,等.长江大通站输沙量时间序列分析研究[J]. 长江流域资源与环境,2005, 14(1):83-87. Ying Ming, Li Jiufa. Wan Xinning, et al. Study on Time Series of Sediment Discharge at Datong Station in the Yangtze River[J]. Resources and Environment in the Yangtze Basin, 2005, 14(1):83-87.
[16] 长江科学院. 长江水沙变化趋势与水利枢纽工程建设对河流健康的影响[R]. 武汉:长江科学院,2007. Changjiang River Scientific Research. Variation Trend of Water and Sediment in Yangtze River and Influence of Water Conservancy Project Construction on River Health[R]. Wuhan: Changjiang River Scientific Research, 2007.
[1] 张施跃, 束龙仓, 闵星, 胡慧杰, 邹志科. 基于土地利用类型的大气降水入渗补给量计算[J]. 吉林大学学报(地球科学版), 2017, 47(3): 860-867.
[2] 徐则民, 梅雪峰, 王礼荣, 张有为, 曾强, 郭丽丽. 滑坡预警中的降水时空变异性——以云南头寨沟为例[J]. 吉林大学学报(地球科学版), 2017, 47(1): 154-162.
[3] 李贶家, 顾延生, 刘红叶. 豫北平原全新世孢粉记录气候变化与古文化演替[J]. 吉林大学学报(地球科学版), 2016, 46(5): 1449-1457.
[4] 牛军宜, 吴泽宁, 贾虎. 降水丰枯变化和产流条件改变对汾河径流影响的定量研究[J]. 吉林大学学报(地球科学版), 2016, 46(3): 814-823.
[5] 卢文喜, 安永凯, 宋文博, 于婷. 吉林西部季节性气象干旱的时空演化特征[J]. 吉林大学学报(地球科学版), 2016, 46(2): 543-551.
[6] 危润初, 肖长来, 方樟. 黑龙江建三江地区地下水动态趋势突变点分析[J]. 吉林大学学报(地球科学版), 2016, 46(1): 202-210.
[7] 张茜,梁秀娟,杜川. 基于无偏灰色马尔可夫链的吉林省降水量预测[J]. 吉林大学学报(地球科学版), 2014, 44(6): 1973-1979.
[8] 于磊,杨井泉,徐丽梅,胡广鑫,胡红,张涛,高明杰,李子轩. 气候变化背景下海河流域干旱特征及趋势[J]. 吉林大学学报(地球科学版), 2014, 44(5): 1615-1624.
[9] 谭志海,黄春长,庞奖励,丁敏. 渭河流域全新世以来野火历史与人类土地利用的炭屑记录[J]. 吉林大学学报(地球科学版), 2014, 44(4): 1297-1306.
[10] 危润初, 肖长来, 张余庆, 梁秀娟. 中国降水混沌识别及空间聚类[J]. 吉林大学学报(地球科学版), 2014, 44(2): 626-635.
[11] 高文,贾大成,李桐林,王泽光,姜琦刚,刘春茹,张潇,姜涛. 松嫩平原东部中、晚更新世地层界限:光释光年龄及元素变化[J]. 吉林大学学报(地球科学版), 2013, 43(6): 1889-1894.
[12] 陈兴贤,骆祖江,安晓宇,谈金忠,田开洋. 深基坑降水三维变参数非稳定渗流与地面沉降耦合模型[J]. 吉林大学学报(地球科学版), 2013, 43(5): 1572-1578.
[13] 刘维明,杨胜利,方小敏. 川西高原黄土记录的末次冰期气候变化[J]. 吉林大学学报(地球科学版), 2013, 43(3): 974-982.
[14] 崔瀚文,姜琦刚,邢宇,徐驰,林楠. 32 a来气候扰动下中国沙质荒漠化动态变化[J]. 吉林大学学报(地球科学版), 2013, 43(2): 582-591.
[15] 黄昌庆, Liu Kambiu, 冯兆东, 冉敏, 杨奇丽, 张晓森. 哈萨克斯坦Tramplin剖面孢粉记录的MIS3a环境变化[J]. 吉林大学学报(地球科学版), 2013, 43(1): 149-154.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!