吉林大学学报(地球科学版) ›› 2025, Vol. 55 ›› Issue (6): 1945-1957.doi: 10.13278/j.cnki.jjuese.20250172

• 地质工程与环境工程 • 上一篇    下一篇

基于模型试验的欠固结深厚土石混合回填区隧道施工力学响应

杨忠平1,2,3,赵凯1,高宇豪1,向宫固1,刘新荣1,2,3    

  1. 1.重庆大学土木工程学院,重庆400045
    2.山地城镇建设与新技术教育部重点实验室(重庆大学),重庆400045
    3.库区环境地质灾害防治国家地方联合工程研究中心(重庆大学),重庆400045
  • 出版日期:2025-11-26 发布日期:2025-12-30
  • 通讯作者: 高宇豪(1997—),男,博士研究生,主要从事岩土工程、地质灾害防治方面的研究,E-mail: yhgao437@163.com
  • 作者简介:杨忠平(1981-),男,教授,博士生导师,主要从事岩土工程、环境岩土等方面的研究,E-mail: yang-zhp@163.com
  • 基金资助:
    广西重点研发计划项目(桂科AB24010144);重庆市技术创新与应用发展专项(CSTB2024TIAD-LDX0018)

Mechanical Response of Tunnel Excavation in Deep Unconsolidated Soil-Rock Mixtures Backfill Based on Model Tests

Yang Zhongping1,2,3,Zhao Kai1,Gao Yuhao1,Xiang Gonggu1,Liu Xinrong1,2,3   

  1. 1. School of Civil Engineering, Chongqing University, Chongqing 400045, China
    2.  Key Laboratory of New Technology for Construction of Cities in Mountain Area (Chongqing University), Ministry of Education, 
    Chongqing 400045, China
    3.  National Joint Engineering Research Center of Geohazards Prevention in the Reservoir Areas (Chongqing University), Chongqing 
    400045, China
  • Online:2025-11-26 Published:2025-12-30
  • Supported by:
    Supported by the Key Research and Development Project of Guangxi (Gui Ke AB24010144) and the Technological Innovation and Application Development Project of Chongqing (CSTB2024TIAD-LDX0018)

摘要: 西南地区广泛分布着结构松散、孔隙率大、强度较低的欠固结土石混合回填土。当隧道穿越此类地层时,常面临成洞条件差、开挖易坍塌和隧道结构失稳等问题,严重威胁隧道施工及运营安全。鉴于此,以重庆市轨道交通某区间隧道为工程背景,通过模型试验研究隧道开挖施工中的力学响应,揭示了围岩位移、应力变化和地表沉降的演化规律,并对比了全断面法、上下台阶法及预留核心土法三种开挖方法对隧道围岩变形、应力释放和地表沉降的差异性变化特征。结果表明:在开挖作用下,围岩位移演化可分为未扰动阶段、缓慢变形阶段、突变阶段和平衡稳定阶段四个阶段,相较于拱肩和拱腰,拱顶围岩变形更为显著,距离隧道拱顶0.2倍洞径处围岩竖向位移为距离拱腰0.2倍洞径处围岩水平位移的1.96倍;围岩各点径向应力变化均呈现出“之”字形趋势,围岩应力释放影响由强至弱依次为拱顶、拱肩、拱腰,而应力降低幅度排序则为拱肩、拱腰、拱顶;地表沉降按变化趋势可分为不敏感阶段、缓慢变形阶段、加速变形阶段和平稳阶段四个阶段,隧道轴线处的地表监测点曲率随着开挖面接近监测断面而逐渐增大;不同开挖方法对围岩扰动的影响强度减弱顺序依次为全断面法、上下台阶法、预留核心土法,采用预留核心土法能有效减小围岩变形、地表沉降及地表影响范围。


关键词: 土石混合体, 相似模型试验, 隧道开挖, 围岩变形, 地表沉降

Abstract:  In Southwestern China, soil-rock mixtures characterized by loose structure, high porosity, and low strength are widely distributed. Tunneling through such strata often leads to, challenges such as poor stability, excavation collapse, and structural failure,posing serious risks to construction and operation. Based on a metro tunnel section in Chongqing, this study investigates the mechanical responses during tunnel excavation using physical model tests. It reveals the evolution of surrounding rock displacement, stress distribution, and surface settlement, and compares the effects of three excavation methods such as full-face, top-and-bottom heading, and core-soil-reserved methods. The displacement of the surrounding rock during excavation progresses through four stages, namely, undisturbed, slow deformation, abrupt change, and stable equilibrium. Deformation is most significant at the tunnel crown, where vertical displacement at 0.2 times the tunnel diameter above the crown is 1.96 times the horizontal displacement at the same distance from the haunch. Radial stress variations exhibit a zigzag trend. Stress-relief influence weakens from crown to shoulder to haunch, while stress-drop magnitude ranks shoulder, haunch, crown. Surface settlement also follows a four-stage pattern: insensitive, slow deformation, accelerated deformation, and stabilization. The curvature of surface monitoring points along the tunnel axis increases gradually as the excavation face approaches the monitoring section. The influence of different excavation methods on the disturbance of surrounding rock is decreased in the order of full section method, upper and lower bench method and reserved core soil method. The reserved core soil method can effectively reduce the deformation of surrounding rock, surface settlement and surface influence range.


Key words: soil-rock mixture, similar model test, tunnel excavation, surrounding rock deformation, surface settlement

中图分类号: 

  • U453.1
[1] 苑成旺, 张敏, 张少龙, 秦磊, 郭海洋, 墨海滢, 信旸. 长春地铁基坑支护结构变形与地表沉降特征[J]. 吉林大学学报(地球科学版), 2025, 55(3): 879-892.
[2] 王伟, 王兴, 周勋, 韦生达. 砂卵石地层盾构区间地表沉降影响因素聚类分析#br#[J]. 吉林大学学报(地球科学版), 2024, 54(1): 219-230.
[3] 秦胜伍, 张延庆, 张领帅, 苗强, 程秋实, 苏刚, 孙镜博. 基于Stacking模型融合的深基坑地面沉降预测[J]. 吉林大学学报(地球科学版), 2021, 51(5): 1316-1323.
[4] 高玮, 胡瑞林. 基质胶结对土石混合体强度变形特性影响[J]. 吉林大学学报(地球科学版), 2015, 45(4): 1164-1172.
[5] 孙超, 薄景山, 刘红帅, 齐文浩. 采空区地表沉降影响因素研究[J]. J4, 2009, 39(3): 498-502.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!