吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (5): 1316-1323.doi: 10.13278/j.cnki.jjuese.20200310

• 岩土防灾与减灾 • 上一篇    下一篇

基于Stacking模型融合的深基坑地面沉降预测

秦胜伍, 张延庆, 张领帅, 苗强, 程秋实, 苏刚, 孙镜博   

  1. 吉林大学建设工程学院, 长春 130026
  • 收稿日期:2020-12-17 出版日期:2021-09-26 发布日期:2021-09-29
  • 作者简介:秦胜伍(1980-),男,教授,博士生导师,主要从事工程地质、地质灾害治理方面的教学与研究工作,E-mail:qinsw@jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(41977221);吉林省科技发展计划项目(20190303103SF)

Prediction of Ground Settlement Around Deep Foundation Pit Based on Stacking Model Fusion

Qin Shengwu, Zhang Yanqing, Zhang Lingshuai, Miao Qiang, Cheng Qiushi, Su Gang, Sun Jingbo   

  1. College of Construction Engineering, Jilin University, Changchun 130026, China
  • Received:2020-12-17 Online:2021-09-26 Published:2021-09-29
  • Supported by:
    Supported by the National Natural Science Foundation of China (41977221) and Jilin Provincial Science and Technology Development Project (20190303103SF)

摘要: 为了提高机器学习对深基坑地面沉降的预测能力,本文提出了一种基于Stacking集成学习方式的多模型融合的地面沉降预测方法,并以深圳某深基坑为例,采用斯皮尔曼相关性系数对基坑地面沉降的影响因子进行筛选;运用筛选后的8个影响因子建立Stacking深基坑地面沉降预测模型,以验证该方法的适用性。结果表明:Stacking预测模型的平均绝对误差为0.34、平均绝对误差百分比为2.22%,均方根误差为0.13,相较于传统基模型(随机森林、支持向量机和人工神经网络),Stacking预测模型的平均绝对误差、平均绝对误差百分比和均方根误差值皆为最小。

关键词: 基坑施工, 地表沉降, Stacking模型融合, 影响因子筛选

Abstract: In order to improve the prediction ability of machine learning in ground settlement of deep foundation pit, in this study,the authors proposed a ground settlement prediction method based on multi-model combination under Stacking framework. Taking a deep foundation pit in Shenzhen as an example, the Spearman correlation coefficient was used to screen the influencing factors of foundation pit ground settlement,and the eight influencing factors were used to establish the prediction model of ground settlement of deep foundation pit, so as to verify the applicability of this method. The mean absolute error, mean absolute error percentage, and root mean square error of the Stacking prediction model are 0.34, 2.22%, and 0.13, respectively. Compared with conventional base models (random forest, support vector machines, and artificial neural networks),the mean absolute error, mean absolute error percentage and root mean square error values of the Stacking prediction model are minimum.

Key words: foundation pit construction, surface subsidence, Stacking model fusion, impact factor screening

中图分类号: 

  • TU47
[1] 胡之锋, 陈健, 邱岳峰, 等. 一种黏土层中深基坑开挖地表沉降预测方法[J]. 长江科学院院报, 2019, 36(6):60-67. Hu Zhifeng, Chen Jian, Qiu Yuefeng, et al. A Simplified Method for Predicting Ground Surface Settlement Induced by Deep Excavation of Clay Stratum[J]. Journal of Changjiang Academy of Sciences, 2019, 36(6):60-67.
[2] 魏纲, 周洋, 魏新江. 盾构隧道施工引起的工后地面沉降研究[J]. 岩石力学与工程学报, 2013, 32(增刊1):2891-2896. Wei Gang, Zhou Yang, Wei Xinjiang. Research on Post-Construction Surface Settlement Caused by Shield Tunneling[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(Sup.1):2891-2896.
[3] Sangyoub L, Daniel W H. Predictive Tool for Estimating Accident Risk[J]. Journal of Construction Engineering and Management, 2003, 129(4):431-436.
[4] 孙超, 许成杰. 基坑开挖对周边环境的影响[J]. 吉林大学学报(地球科学版), 2019, 49(6):1698-1705. Sun Chao, Xu Chengjie. Influence of Excavation of a Deep Excavation on the Surrounding Environment[J]. Journal of Jilin University (Earth Science Edition), 2019, 49(6):1698-1705.
[5] Yoo C, Lee D. Deep Excavation-Induced Ground Surface Movement Characteristics:A Numerical Investigation[J]. Computers and Geotechnics, 2008, 35(2):231-252.
[6] Zhou Y, Su W, Ding L, et al. Predicting Safety Risks in Deep Foundation Pits in Subway Infrastructure Projects:Support Vector Machine Approach[J]. Journal of Computing in Civil Engineering, 2017, 31(5):040170525.
[7] 刘贺, 张弘强, 刘斌.基于粒子群优化神经网络算法的深基坑变形预测方法[J]. 吉林大学学报(地球科学版), 2014, 44(5):1609-1614. Liu He, Zhang Hongqiang, Liu Bin. A Prediction Method for the Deformation of Deep Foundation Pit Based on Particle Swarm Optimization Neural Network[J]. Journal of Jilin University (Earth Science Edition), 2014, 44(5):1609-1614.
[8] 齐干, 朱瑞钧. 基于BP网络的基坑周围地表沉降影响因素分析[J]. 地下空间与工程学报, 2007, 3(5):863-867. Qi Gan, Zhu Ruijun. Analysis of Factors Affecting Ground Settlement Around Deep Foundation Pit Based on BP Neural Network[J]. Chinese Journal of Underground Space and Engineering, 2007, 3(5):863-867.
[9] 石祥锋, 王丽芬, 沈阳, 等. 基于GA-SVM的基坑施工地面沉降时间序列预测研究[J]. 施工技术, 2017, 46(8):16-19. Shi Xiangfeng, Wang Lifen, Shen Yang, et al. Research on Time Series Predication of Foundation Excavation Construction Land Settlement Based on the GA-SVM[J]. Construction Technology, 2017, 46(8):16-19.
[10] 林楠, 陈永良, 李伟东, 等. 极限学习机模型在季冻区深基坑地表沉降预测中的应用[J]. 世界地质, 2018, 37(4):1281-1287. Lin Nan, Chen Yongliang, Li Weidong, et al. Application of Extreme Learning Machine Model in Ground Settlement Prediction of Deep Foundation Pit in Seasonal Frozen Area[J]. Global Geology, 2018, 37(4):1281-1287.
[11] 李珩, 朱靖波, 姚天顺. 基于Stacking算法的组合分类器及其应用于中文组块分析[J]. 计算机研究与发展, 2005(5):844-848. Li Heng, Zhu Jingbo, Yao Tianshun. Combined Multiple Classifiers Based on a Stacking Algorithm and Their Application to Chinese Text Chunking[J]. Journal of Computer Research and Development, 2005(5):844-848.
[12] 王荣政, 廖贤艺, 陈湘萍, 等. 基于集成学习融合模型的血糖预测[J]. 医学信息学杂志, 2019, 40(1):59-62. Wang Rongzheng, Liao Xianyi, Chen Xiangping, et al. Blood Glucose Prediction Based on Integrated Learning Fusion Model[J]. Journal of Medical Informatics, 2019, 40(1):59-62.
[13] Jiang M Q, Liu J P, Zhang L, et al. An Improved Stacking Framework for Stock Index Prediction by Leveraging Tree-Based Ensemble Models and Deep Learning Algorithms[J]. Physica A:Statistical Mechanics and Its Applications, 2020, 541(1):122272.
[14] 史佳琪, 张建华. 基于多模型融合Stacking集成学习方式的负荷预测方法[J]. 中国电机工程学报, 2019, 39(14):4032-4042. Shi Jiaqi, Zhang Jianhua. Load Forecasting Method Based on Multi-Model by Stacking Ensemble Learning[J]. Proceedings of the CSEE, 2019, 39(14):4032-4042.
[15] 刘安强, 王子童. 基于Stacking集成学习的采空区地面塌陷危险性预测[J]. 能源与环保, 2020, 42(9):54-58. Liu Anqiang, Wang Zitong. Prediction of the Risk of Ground Collapse in Goaf Based on Stacking Integrated Learning[J]. China Energy and Environmental Protection, 2020, 42(9):54-58.
[16] Wang J, Xu J, Peng Y, et al. Prediction of Forest Unit Volume Based on Hybrid Feature Selection and Ensemble Learning[J]. Evolutionary Intelligence, 2020, 13(1):21-32.
[17] Wolpert D H. Stacked Generalization[J]. Neural Networks, 1992, 5(2):241-259.
[18] 王牧帆, 罗周全, 于琦. 基于Stacking模型的采空区稳定性预测[J]. 黄金科学技术, 2020, 28(6):894-901. Wang Mufan, Luo Zhouquan, Yu Qi. Stability Prediction of Goaf Based on Stacking Model[J]. Gold Science and Technology, 2020, 28(6):894-901.
[19] Breiman L, Random Forests[J]. Mach Learn, 2001, 45(1):5-32.
[20] Vapnik V N. The Nature of Statistical Learning Theory[M]. New York:Springer, 1995.
[21] Kasabov N, Scott N M, Tu E, et al. Evolving Spatio-Temporal Data Machines Based on the Neu Cube Neuromorphic Framework:Design Methodology and Selected Applications[J]. Neural Networks, 2016, 78(Sup.1):1-14.
[22] 谭震霖. 基于支持向量回归的地铁深基坑地表沉降预测[D]. 武汉:华中科技大学, 2019. Tan Zhenlin. Surface Subsidence Prediction of Deep Foundation Pit Based on Support Vector Regression[D]. Wuhan:Huazhong University of Science and Technology, 2019.
[23] 钟国强, 王浩, 李莉, 等. 基于SFLA-GRNN模型的基坑地表最大沉降预测[J]. 岩土力学, 2019, 40(2):792-798. Zhong Guoqiang, Wang Hao, Li Li, et al. Prediction of Maximum Settlement of Foundation Pit Based on SFLA-GRNN Model[J]. Rock and Soil Mechanics, 2019, 40(2):792-798.
[1] 孙超, 薄景山, 刘红帅, 齐文浩. 采空区地表沉降影响因素研究[J]. J4, 2009, 39(3): 498-502.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 程立人,张予杰,张以春. 西藏申扎地区奥陶纪鹦鹉螺化石[J]. J4, 2005, 35(03): 273 -0282 .
[2] 陈 力,佴 磊,王秀范,李 金. 绥中某电力设备站场区地震危险性分析[J]. J4, 2005, 35(05): 641 -645 .
[3] 李斌,孟自芳,李相博,卢红选,郑民. 泌阳凹陷下第三系构造特征与沉积体系[J]. J4, 2005, 35(03): 332 -0339 .
[4] 赵宏光,孙景贵,陈军强,赵俊康,姚凤良,段 展. 延边小西南岔富金斑岩铜矿床的含矿流体起源与演化——H,O,C,S,Pb同位素示踪[J]. J4, 2005, 35(05): 601 -606 .
[5] 孟元林,高建军,刘德来,牛嘉玉,孙洪斌,周玥,肖丽华,王粤川. 辽河坳陷鸳鸯沟地区成岩相分析与异常高孔带预测[J]. J4, 2006, 36(02): 227 -0233 .
[6] 曾昭发,吴燕冈,郝立波,王者江,黄 航. 基于泊松定理的重磁异常分析方法及应用[J]. J4, 2006, 36(02): 279 -0283 .
[7] 常秋玲,卢欣祥,刘东华,李明立. 东秦岭五朵山花岗岩体及金矿关系探讨[J]. J4, 2006, 36(03): 319 -325 .
[8] 马艳梅,崔启良,周强,黄伟军,刘冶,彭刚,邹广田. 橄榄石原位高温拉曼光谱研究[J]. J4, 2006, 36(03): 342 -345 .
[9] 郝琦,刘震,查明,李春霞. 辽河茨榆坨潜山太古界裂缝型储层特征及其控制因素[J]. J4, 2006, 36(03): 384 -390 .
[10] 曾道明,纪宏金,陈 满,胡大千,朱永正. 胶东山城金矿地质与地球化学变量的关系[J]. J4, 2006, 36(04): 511 -515 .