J4

• 地球物理 • 上一篇    下一篇

利用测井资料自动识别藻灰岩

张振城1,孙建孟1,马建海2,张炜1,苏远大1   

  1. 1.中国石油大学(华东) 地球资源与信息学院, 山东 东营 257061; 2.青海油田分公司, 甘肃 兰州 736202
  • 收稿日期:2004-08-02 修回日期:1900-01-01 出版日期:2005-05-26 发布日期:2005-05-26
  • 通讯作者: 张振城

Automatic Identification of Algae Limestone with Well Logging Data

ZHANG Zhen-cheng1,SUN Jian-meng1,MA Jian-hai2, ZHANG Wei1, SU Yuan-da1   

  1. 1.Faculty of GeoResource and Information,University of Petroleum, China, Dongying 257061,China;2.Qinghai Oilfield,Lanzhou 736202,China
  • Received:2004-08-02 Revised:1900-01-01 Online:2005-05-26 Published:2005-05-26
  • Contact: ZHANG Zhen-cheng

摘要: 藻灰岩在测井曲线图上具有不同于其它岩性的特征,据此确定了7种测井参数(自然伽玛、自然电位、井径、声波时差、补偿中子、补偿密度及深电阻率),将测井数据归一化后得到了相应的岩性判别样本参数。利用F-Means中速度较快的聚类迭代(LBG)算法对研究样本进行分类,优选了一组数据用于判别分析。在进行Q因子分析的基础上建立了用于岩性判别的3个判别函数,并对花土沟油田某井段进行了岩性识别预测分析。

关键词: 藻灰岩, 归一化, 聚类迭代, 岩性判别

Abstract: Algae limestone represents different characteristics in the plot of well logging. Accordingly seven parameters(GR,SP,CAL,AC,CNL,DEN,RT) selected from well logging data are standardized to form sample parameters for lithologic identification. The LBG(LindeBuzoGray) algorithms in Fmeans cluster is used to classify the samples, a set of data is then selected for the identification and analysis. Based on Q gene analysis, three identification functions have been obtained and used in lithologic identification and prediction in terms of well logging data of Huatugou oilfield. The method is fast and efficient in identifying algae limestone based on well logging data.

Key words: algae limestone, digitalized, LBG algorithms, lithologic identification

中图分类号: 

  • P631.81
[1] 郑国磊, 徐新学, 李世斌, 袁航, 马为, 叶青. 天津市重力数据反演解释[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1221-1230.
[2] 周林飞, 陈启新, 成遣, 张静. 利用粗糙集理论进行遥感分类信息提取[J]. 吉林大学学报(地球科学版), 2015, 45(4): 1246-1256.
[3] 黄绍霖,徐涵秋,王琳. CPF变化对Landsat TM/ETM+辐射校正结果的影响[J]. 吉林大学学报(地球科学版), 2014, 44(4): 1382-1387.
[4] 王彦国,张凤旭,王祝文,孟令顺,张瑾. 位场归一化差分法的边界检测技术[J]. 吉林大学学报(地球科学版), 2013, 43(2): 592-602.
[5] 张凤琴,张凤旭,刘财,徐东海,林泽付. 利用DCT法计算重力归一化总梯度[J]. J4, 2007, 37(4): 804-0808.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!