J4

• 地质工程·环境工程 • 上一篇    下一篇

基于粗糙集和人工神经网络的洞室岩体质量评价

邱道宏,陈剑平,阙金声,安鹏程   

  1. 吉林大学 建设工程学院,长春 130026
  • 收稿日期:2007-03-29 修回日期:1900-01-01 出版日期:2008-01-26 发布日期:2008-01-26
  • 通讯作者: 邱道宏

Evaluation of Tunnel Rock Quality with Routh Sets Theory and Artificial Neural Networks

QIU Dao-hong, CHEN Jian-ping, QUE Jin-sheng, AN Peng-cheng   

  1. College of Construction Engineering, Jilin University, Changchun 130026, China
  • Received:2007-03-29 Revised:1900-01-01 Online:2008-01-26 Published:2008-01-26
  • Contact: QIU Dao-hong

摘要: 针对洞室岩体质量问题,从洞室工程的角度选取能够反映岩体综合工程特性的6个参数,用可拓评判和专家审定的方法构建了决策样本集;再利用粗糙集理论对原始决策样本集进行约简操作,并分析各指标对决策的相对重要性;最后将约简结果生成的规则作为人工神经网络的输入,建立了洞室岩体质量评价模型。通过工程实例分析对比,该模型有效地简化神经网络的网络结构,减少网络的训练步数,提高网络的学习效率,能够较准确地反映洞室岩体的工程特性。

关键词: 岩体质量评价, 粗糙集, 知识约简, 人工神经网络

Abstract: To evaluate the tunnel rock quality, six parameters reflecting the general properties of rock engineering was selected to build the decision table, which was evaluated by extenics theory and expert examination, and rough sets theory was applied to reduce the original decision table and to analyze the relative importance of every parameter. Finally, the reduction results are transformed into rules, which are used as input of the BP neural networks. Combining rough sets theory with artificial neural networks, then the evaluation model of tunnel rock quality was established. Through the case study, the model can efficiently simplifies the networks structure, reduces the networks training period and has better study efficiency and can more precisely reflect the engineering characteristics of tunnel rock.

Key words: ]rock quality evaluation, rough sets, data reduction, artificial neural networks

中图分类号: 

  • TU457
[1] 周林飞, 陈启新, 成遣, 张静. 利用粗糙集理论进行遥感分类信息提取[J]. 吉林大学学报(地球科学版), 2015, 45(4): 1246-1256.
[2] 王宇, 卢文喜, 卞建民, 侯泽宇. 三种地下水位动态预测模型在吉林西部的应用与对比[J]. 吉林大学学报(地球科学版), 2015, 45(3): 886-891.
[3] 韩舸,龚威,吴婷,赵艳南. 利用粗糙集的滑坡分阶段位移预测方法--以白家包滑坡为例[J]. 吉林大学学报(地球科学版), 2014, 44(3): 925-931.
[4] 牛瑞卿, 彭令, 叶润青, 武雪玲. 基于粗糙集的支持向量机滑坡易发性评价[J]. J4, 2012, 42(2): 430-439.
[5] 赵安平, 王清, 张中琼. 土体微观结构对冻胀影响的灰色关联及粗糙集评价[J]. J4, 2011, 41(3): 791-798.
[6] 秦胜伍,陈剑平. 隧道围岩压力的神经网络时间序列分析[J]. J4, 2008, 38(6): 1005-1009.
[7] 车茜,陈剑平,阙金声. 基于粗糙集的可拓评判权值确定[J]. J4, 2008, 38(2): 268-0272.
[8] 徐佩华,陈剑平,阙金声,仲志成,王 清. 基于人工神经网络的三峡水库库岸稳定性分级[J]. J4, 2007, 37(3): 564-0569.
[9] 林 玎,刘 伟,张治国. 自组织特征映射神经网络在厄尔尼诺事件检验中的应用[J]. J4, 2006, 36(04): 609-612.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!