Journal of Jilin University(Earth Science Edition) ›› 2015, Vol. 45 ›› Issue (6): 1789-1797.doi: 10.13278/j.cnki.jjuese.201506202

Previous Articles     Next Articles

Event of Block up of Upper Yellow River by Dehenglong-Suozi Landslides

Guo Xiaohua1, Lu Yudong1, Li Xiaolin2, Sun Zheng3, Li Chongyang4, Zhang Rong1   

  1. 1. Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education/School of Environmental Science and Engineering, Chang'an University, Xi'an 710064, China;
    2. Environmental Geological Prospecting Bureau of Qinghai Province, Xining 810007, China;
    3. Engineering Investigation Institute of Qinghai Province, Xining 810016, China;
    4. Hydrology and Engineering Geology Department 915, Geological Investigation Institution of Sichuan Province, Chengdu 610012, China
  • Received:2014-02-21 Published:2015-11-26

Abstract:

Giant landslides (1×108 m3) are common along the upper Yellow River from Longyang Gorge to Liujia Gorge. The largest one on record reached 30×108 m3, which had ever blocked and dammed the Yellow River. The study on the mechanism of giant landslides along the upper Yellow River would be important for construction engineering and countermeasures to prevent from any undesirable events. The author analyzed seven geological occurrences, and concluded that Dehenglong landslide and Suozi landslide occurred during 70-80 ka. They were triggered by an earthquake and dammed up the Yellow River at that time. They had a close relationship with the tectonic movement in Qinghai-Tibetan Plateau before ca. 80 ka, which is evidenced by the existence of the dammed lakes caused by Dehenglong-Suozi landslides.

Key words: the upper Yellow River, giant landslides, dammed lake, earthquake-triggered landslides, Dehenglong-Suozi landslides

CLC Number: 

  • P642.23

[1] 刘汉超, 张卓元. 龙羊峡附近超固结粘土大型滑坡的形成机理及高速远滑的原因[J]. 成都地质学院学报, 1986, 13(8):94-104. Liu Hanchao, Zhang Zhuoyuan. Mechanism of Landslides of Over-Consolidated Clay Occurrence and Its Relevant Reasons for the High-Speed Landslide[J]. Journal of Chengdu Geologic College, 1986,13(8):94-104.

[2] 李小林, 郭小花, 李万花. 黄河上游龙羊峡刘家峡河段巨型滑坡形成机理分析[J]. 工程地质学报, 2011, 19(4):516-529. Li Xiaolin, Guo Xiaohua, Li Wanhua.Mechanism of Giant Landslides from Longyangxia Valley to Liujiaxia Valley Along Upper Yellow River[J]. Journal of Engineering Geology,2011, 19(4):516-529.

[3] 李小林, 马建青, 胡贵寿. 黄河龙羊峡刘家峡河段特大型滑坡成因分析[J]. 中国地质灾害与防治学报, 2007, 18(1):28-32. Li Xiaolin, Ma Jianqing, Hu Guishou. Genetic Analysis on Huge Landslides Along the Section from Longyang Gorge to Liujia Gorge of the Yellow River[J]. The Chinese Journal of Geological Hazard and Control, 2007, 18(1):28-32.

[4] 周保, 胡贵寿, 彭建兵,等. 基于GIS的黄河上游拉干峡寺沟峡段滑坡危险性评价[J].南水北调与水利科技, 2010, 8(1):36-48. Zhou Bao, Hu Guishou, Peng Jianbing, et al. An Evaluation on the Basis of GIS of Risk for Landslides from Laganxia Gorge to Sigouxia Gorge[J]. South-to-North Water Transfers and Water Science & Technology, 2010, 8(1):36-48.

[5] 周洪福, 韦玉婷, 聂德新. 黄河上游戈龙布滑坡高速下滑成因机制及堵江分析[J]. 工程地质学报, 2009, 17(4):483-488. Zhou Hongfu, Wei Yuting, Nie Dexin. Formation Mechanism of High-Speed Gelongbu Landslide and Associated Blockage of Upper Reach Yellow River[J]. Journal of Engineering Geology, 2009,17(4):483-488.

[6] 王文俊, 宋彦辉. 黄河上游某滑坡群特征浅析[J]. 勘察科学技术, 2003(5):49-52. Wang Wenjun, Song Yanhui. Analysis for a Landslide Lass on the Upper Yellow River[J]. Site Investigation Science and Technology,2003(5):49-52.

[7] 彭建兵.黄河积石峡水电站水库滑坡工程地质研究[M].西安: 陕西科学技术出版社, 1997. Peng Jianbing. Study on the Reservoir Landslide Engineer Geology of Jishi Valley Hydropower in the Upper Yellow River[M]. Xi'an: Shaanxi Science and Technology Press, 1997.

[8] 刘厚健, 张政治, 杜智斌.黄河上游查让东山巨型滑坡形成条件分析[J].电力勘测设计, 2002(3):13-16. Liu Houjian, Zhang Zhengzhi, Du Zhibin. Analysis for the Occurrence of Zharangdong Landslide Along the Upper Yellow River[J]. Electric Power Survey & Design, 2002(3):13-16.

[9] 孙延贵. 化隆盆地西南部滑坡群应力控制的机制[J]. 水土保持学报, 1989,3(2): 90-96. Sun Yangui. An Approach on the Controlling Mechanism of Landslide from Stress in the Southwest Hualong Basin of Qinghai Province[J]. Acta Conservations Soil Et Aquae Sinica, 1989, 3(2): 90-96.

[10] 李小林, 龙作元.青海地质环境:青藏高原隆升对青海水工环地质工作的影响[M].北京:地质出版, 2008. Li Xiaolin, Long Zuoyuan. Qinghai Geological Environment: Qinghai-Tibet Uplift and Qinghai Hydrogeology Engineering Geology and Enviromental Geology[M].Beijing: Geological Publishing House, 2008.

[11] 郭小花, 李小林, 赵振, 等. 青海4·14玉树地震地质作用对地质环境影响分析[J].工程地质学报,2011,19(5):685-695. Guo Xiaohua, Li Xiaolin, Zhao Zhen, et al. Effects of 4·14 Yushu Earthquake in Qinghai on Geological Environment[J]. Journal of Engineering Geology, 2011,19(5):685-695.

[12] 赵振明, 刘百篪.青海共和至甘肃兰州黄河河谷地貌的形成与青藏高原东北缘隆升的关系[J]. 西北地质, 2003, 36(2):1-12. Zhao Zhengming, Liu Baichi. Landforms from Gonghe, Qinghai to Lanzhou, Gansu and the Uplifting in Northeast Part of Qinghai-Xizang Plateau[J]. Northwestern Geology,2003, 36(2):1-12.

[13] Guo X H, Lai Z P, Sun Z, et al. OSL Chronology of Giant Dehenglong Landslide in the Upper Yellow River of the Northeastern Tibetan Plateau[J]. Acta Geologica Sinica, 2015, 89: 242-250.

[14] Guo X H, Lai Z P, Sun Z, et al. Luminescence Dating of Suozi Landslide in the Upper Yellow River of the Qinghai-Tibetan Plateau, China[J]. Quaternary International, 2014, 349: 159-166.

[15] Lisiecki L E, Raymo M E. A Pliocene-Pleistocene Stack of 57 Globally Benthic δ18O Records[J]. Paleoceanography, 2005, 20:1-17.

[16] Yao T D, Lonnie G, Thompson E M, et al. Cli-matological Significance of δ18O in the North Tibetan Ice Cores[J]. J Geophys Res, 1996, 101: 29531-29537.

[17] 山发寿, 杜乃秋, 孔昭宸.青海湖盆地35万年来的植被演化及环境变迁[J].湖泊科学, 1993, 5(1):9-17. Shan Fashou, Du Naiqiu, Kong Zhaochen.Vegetational and Environmental Changes in the Last 350 ka in Erlangjian,Qinghai Lake[J]. Journal of Lake Sciences, 1993, 5(1):9-17.

[18] 郑光, 许强, 林峰, 等. 2012年6·29贵州岑巩龙家坡滑坡灾害的基本特征与成因机理:一个由侧向剪切扰动诱发大型滑坡的典型案例[J]. 吉林大学学报:地球科学版, 2014, 44(3):932-945. Zheng Guang, Xu Qiang, Lin Feng, et al. Characteristics and Failure Mechanism of the Longjiapo Landslide in Cenggong, Guizhou on June 29, 2012: A Case of Catastrophic Landslides Triggered by Lateral Shear Disturbance[J]. Journal of Jilin University: Earth Science Edition, 2014, 44(3):932-945.

[1] Guo Xiaojun, Li Yong, Cui Peng. Experiment on Random Law of Slope Soil Movement in the Source Area of Debris Flow [J]. Journal of Jilin University(Earth Science Edition), 2014, 44(4): 1260-1268.
[2] Zhu Yuan,Yu Bin,Qi Xing,Wang Tao,Chen Yuanjing. Topographical Factors in the Formation of Gully Type Debris Flows in the Upper Reaches of Minjiang River [J]. Journal of Jilin University(Earth Science Edition), 2014, 44(1): 268-277.
[3] Wang Yongsheng,Zhu Yanpeng,Jin Peihao. Modeling and Analysis of the Coupling Wear Random Process of Debris Flow Drainage Structure [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(5): 1556-1562.
[4] Xu Liming, Wang Qing, Chen Jianping, Pan Yuzhen. Forcast for Average Velocity of Debris Flow Based on BP Neural Network [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(1): 186-191.
[5] Wang Xue-dong,Li Guang-jie,Meng Fan-qi,Huang Yong,Peng Shuai-ying. Examples of Debris Flow Risk Assessment Based on Improved Scatter Degree [J]. Journal of Jilin University(Earth Science Edition), 2012, 42(6): 1853-1858.
[6] Tan Chun,Chen Jian-ping,Li Hui-zhong,Niu Cen-cen,Zhang Wen, Zhou Fu-jun. Application of Weighted Distance Discriminant Analysis in Debris Flow Risk Assessment [J]. Journal of Jilin University(Earth Science Edition), 2012, 42(6): 1847-1852.
[7] WAN Yuan, XU Jian-dong, LIN Xu-dong, PAN Bo. Analysis to the Lahars Extent in Changbai Mountains by Numerical Simulation [J]. J4, 2011, 41(5): 1638-1645.
[8] HUANG Rui, CHEN Jian-peng, LI Hui-zhong, ZHANG Chen, ZHANG Wen, XU Pei-hua. Dynmic Characteristics of Debris Flow Based on the Granularmetric Analysis of the Value of φ [J]. J4, 2011, 41(1): 182-187.
[9] ZHANG Chen, CHEN Jian-ping, WANG Qing, GU Fu-Guang, ZHANG Wen. Prediction Model of Debris Flow Risk Range in Wudongde Region [J]. J4, 2010, 40(6): 1365-1370.
[10] ZHANG Wen, CHEN Jian-ping, QIN Sheng-wu, ZHANG Chen, LI Ming, MA Jian-quan. Application of FCM Based on Principal Components Analysis in Debris Flow Classification [J]. J4, 2010, 40(2): 368-372.
[11] Xu Peihua, Yuan Zhongfan, Li Guangjie, Li Guang, Du Wenhao, Wang Yuehua. Prediction on the Hazardous Extent of the Secondary Debris Flow Induced by Volcanic Disaster of Changbai Moutains [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(4): 1155-1163.
[12] Wang Meng, Jiang Yuanjun, Huang Dong, Li Qianqian. Hazard Assessment on Rainfall-Triggered Landslide and Debris Flow in the Seismic Disturbance Area at Watershed Level [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(6): 1781-1788.
[13] Wang Changming, Tian Shuwen, Wang Yihong, Ruan Yunkai, Ding Guiling. Risk Assessment of Debris Flow: A Method of SVM Based on FCM [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(4): 1168-1175.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!