Journal of Jilin University(Earth Science Edition) ›› 2017, Vol. 47 ›› Issue (4): 1229-1235.doi: 10.13278/j.cnki.jjuese.201704203

Previous Articles     Next Articles

Three Dimension Model Construction for TOUGH2 Based on GMS and Comparison of Simulations

Tan Jiahua1, Lei Hongwu2   

  1. 1. China Railway Siyuan Survey and Design Group co., LTD, Wuhan 430063, China;
    2. Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
  • Received:2016-10-07 Online:2017-07-26 Published:2017-07-26
  • Supported by:
    Supported by National Natural Science Foundation of China(41502246)and China Postdoctoral Science Foundation(2015M580682)

Abstract: GMS and TOUGH2 are the famous softwares in the field of groundwater numerical simulation. Although TOUGH2 has the strong ability of numerical calculation, it lacks the friendly interface for pre- and post-process. With the powerful function of pre- and post-process in GMS and the conceptual modeling approach to construct the three dimension model, this paper converts the numerical model of GMS/MODFLOW (including gridding data, rocks property, initial and boundary data) into that of TOUGH2 for numerical calculation. Two examples (flat aquifers and variation elevation of aquifers) are used to analyze the difference of results between GMS/MODFLOW and TOUGH2. The results indicate that this method is elegant to construct complex model fast for TOUGH2 and the difference is small which proves the high credibility for those two softwares. At the same time, this method can take individual advantage of the softwares and provide the feasibility to conduct more complex multiphase flow simulations.

Key words: numerical simulation, GMS, TOUGH2, three dimension model, comparison of simulations

CLC Number: 

  • P641.69
[1] 祝晓彬. 地下水模拟系统(GMS)软件[J]. 水文地质工程地质, 2003, 30(5): 53-55. Zhu Xiaobin. Groundwater Modeling System(GMS) Software[J]. Hydrogeology & Engineering Geology, 2003, 30(5): 53-55.
[2] Owen S J, Jones N L, Holland J P. A Comprehensive Modeling Environment for the Simulation of Groundwater Flow and Transport[J]. Engineering with Computers, 1996, 12(3): 235-242.
[3] Pruess K, Oldenburg C M, Moridis G J. TOUGH2 User's Guide[M]. 2nd ed. Berkeley: Lawrence Berkeley National Laboratory, 1999.
[4] 郭亮亮, 张延军, 许天福, 等. 大庆徐家围子不同储层改造的干热岩潜力评估[J]. 吉林大学学报(地球科学版), 2016, 46(2): 525-535. Guo Liangliang, Zhang Yanjun, Xu Tianfu, et al. Evaluation of Hot Dry Rock Resource Potential Under Different Reservoir Conditions in Xujiaweizi Area, Daqing[J]. Journal of Jilin University (Earth Scicncc Edition), 2016, 46(2): 525-535.
[5] 雷宏武, 金光荣, 李佳琦, 等. 松辽盆地增强型地热系统(EGS)地热能开发热-水动力耦合过程[J]. 吉林大学学报(地球科学版), 2014, 44(5): 1633-1646. Lei Hongwu, Jin Guangrong, Li Jiaqi, et al. Coupled Thermal-Hydrodynamic Processes for Geothermal Energy Exploitation in Enhanced Geothermla System at Songliao Basin, China[J]. Journal of Jilin University (Earth Science Edition), 2014, 44(5): 1633-1646.
[6] 韩忠, 邵景力, 崔亚莉, 等. 基于MODFLOW的地下水流模型前处理优化[J]. 吉林大学学报(地球科学版), 2014,44 (4): 1290-1296. Han Zhong, Shao Jingli, Cui Yali, et al. Preprocessing Optimization of Groundwater Flow Model Based on MODFLOW[J]. Journal of Jilin University (Earth Science Edition), 2014, 44(4): 1290-1296.
[7] Thunderhead Engineering. Petrasim User Manual [M]. 4th ed. New York:[s.l.], 2007.
[8] Li Y, Niewiadomski M, Trujillo E, et al. Tougher: A User-Friendly Graphical Interface for TOUGHREACT[J]. Computers & Geosciences, 2011, 37(6): 775-782.
[9] Florian Wellmann J, Croucher A, Regenauer-Lieb K. Python Scripting Libraries for Subsurface Fluid and Heat Flow Simulations with TOUGH2 and SHEMAT[J]. Computers & Geosciences, 2012, 43: 197-206.
[10] Audigane P, Chiaberge C, Mathurin F, et al. A Workflow for Handling Heterogeneous 3D Models with the TOUGH2 Family of Codes: Applications to Numerical Modeling of CO2 Geological Storage[J]. Computers & Geosciences, 2011, 37(4): 610-620.
[11] Borgia A, Cattaneo L, Marconi D, et al. Using a MODFLOW Grid, Generated with GMS, to Solve a Transport Problem with TOUGH2 in Complex Geological Environments: The Intertidal Deposits of the Venetian Lagoon[J]. Computers & Geosciences, 2011, 37(6): 783-790.
[12] 杨艳林, 许天福, 李佳琦, 等. 应用TOUGH模拟二氧化碳地质储存过程的复杂地质体建模技术与实现[J]. 吉林大学学报(地球科学版), 2014, 44(4): 1307-1313. Yang Yanlin, Xu Tianfu, Li Jiaqi, et al. Complex Geological Body Modeling and Implementation of CO2 Geological Storage Simulation Using TOUGH[J]. Journal of Jilin University (Earth Science Edition), 2014, 44(4): 525-535.
[13] Berry P, Bonduá S, Bortolotti V, et al. A GIS-Based Open Source Pre-Processor for Georesources Numerical Modeling[J]. Environmental Modelling & Software, 2014, 62: 52-64.
[14] Bonduá S, Berry P, Bortolotti V, et al. TOUGH2 Viewer: A Post-Processing Tool for Interactive 3D Visualization of Locally Refined Unstructured Grids for TOUGH2[J]. Computers & Geosciences, 2012, 46: 107-118.
[15] Avis J, Calder N. Walsh R. mView: A Powerful Pre-and Post-Processor for TOUGH2 [C]//Proceedings of TOUGH Symposium. Berkeley: Lawrence Berkeley National Laboratory, 2012: 1-11.
[16] Hu L, Zhang K, Cao X, et al. IGMESH: A Convenient Irregular-Grid-Based Pre-and Post-Processing Tool for TOUGH2 Simulator[J]. Computers & Geosciences, 2016, 95: 11-17.
[17] Harbaugh A W, MODFLOW-2005: The U S Geological Survey Modular Ground-Water Model:The Ground-Water Flow Process, in Techniques and Methods [R]. Reston: U S Geological Survey, 2005.
[18] McDonald M G, Harbaugh A W. A Modular Three-Dimensional Finite-Difference Ground-Water Flow Model [R]//Techniques of Water-Resources Investigations of U S Geological Survey. Reston: U S Geological Survey, 2005.
[19] Environmental Modeling Research Laboratory. Groundwater Modeling System Tutorials: Vol 2: Modflow-Conceptual Modeling Approach[R]. Provo: Aquaveo, 2004.
[1] Ruan Dawei, Li Shunda, Bi Yaqiang, Liu Xingyu, Chen Xuhu, Wang Xingyuan, Wang Keyong. Ore-Controlling Structures and Deep Metallogenic Prediction of Aerhada Pb-Zn Deposit in Inner Mongolia [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(6): 1705-1716.
[2] Yin Songyu, Zhao Dajun, Zhou Yu, Zhao Bo. Numerical Simulation and Experiment of the Damage Process of Heterogeneous Rock Under Ultrasonic Vibration [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(2): 526-533.
[3] JiangYanjiao, Sun Jianmeng, Gao Jianshen, Shao Weizhi, Chi Xiurong, Chai Xiyuan. Numerical Simulation of Mud Invasion Around the Borehole in Low Permeability Reservoir and a Method for Array Induction Log Resistivity Correction [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(1): 265-278.
[4] Zhu Chuanhua, Wang Weifeng, Wang Qingzhen, Li Yukun. Numerical Simulation of Structural Strain for Turbidite Sands Reservoirs of Low Permeability [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(5): 1580-1588.
[5] Wang Changming, Chang Gaoqi, Wu Qian, Li Wentao. Pile-Soil Interaction Mechanism and a Method to Determine Vertical Bearing Capacity of Prestressed Concrete Pipe Pile [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(3): 805-813.
[6] Zou Youqin, Liu Li, Li Hongqing, Yan Chun, Zeng Masun, Lan Yingying. Hydrogeological Conditions Control of Shale Gas Exploration [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(3): 824-830.
[7] Qian Wenjian, Shang Yuequan, Du Lili, Zhu Senjun. Influences of Inflatable Location and Pressure on Draining of Slopes [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(2): 536-542.
[8] Yu Peng, Ma Teng, Tang Zhonghua, Zhou Wei. Feasibility of Oilfield Wastewater Disposal in the Underpressure System of Basin [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(1): 211-219.
[9] Li Zhengwei, Zhang Yanjun, Guo Liangliang, Jin Xianpeng. Prediction of Hydrothermal Production from Hot Dry Rock Development in Northern Songliao Basin [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(4): 1189-1197.
[10] Shu Longcang, Fan Jianhui, Lu Chengpeng, Zhang Chunyan, Tang Ran. Hydrogeological Simulation Test of Fissure-Conduit Media in Springs Watershed [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(3): 908-917.
[11] Yang Lichun, Pang Yubin, Li Shengang. Research on Construction Spatial Effects in Long Foundation Pit [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(2): 541-545.
[12] Lei Hongwu, Li Jiaqi, Xu Tianfu, Wang Fugang. Numerical Simulation of Coupled Thermal-Hydrodynamic-Mechanical (THM) Processes for CO2 Geological Sequestration in Deep Saline Aquifers at Ordos Basin, China [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(2): 552-563.
[13] Lei Hongwu, Jin Guangrong, Li Jiaqi, Shi Yan, Feng Bo. Coupled Thermal-Hydrodynamic Processes for Geothermal Energy Exploitation in Enhanced Geothermal System at Songliao Basin, China [J]. Journal of Jilin University(Earth Science Edition), 2014, 44(5): 1633-1646.
[14] Yang Yanlin,Xu Tianfu,Li Jiaqi,Wang Fugang. Complex Geological Body Modeling and Implementation of CO2 Geological Storage Simulation Using TOUGH [J]. Journal of Jilin University(Earth Science Edition), 2014, 44(4): 1307-1313.
[15] Chen Xingxian, Luo Zujiang, An Xiaoyu, Tan Jinzhong, Tian Kaiyang. Coupling Model of Groundwater Three Dimensional Variable-Parametric Non-Steady Seepage and Land-Subsidence [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(5): 1572-1578.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!