Journal of Jilin University(Earth Science Edition) ›› 2017, Vol. 47 ›› Issue (4): 1308-1318.doi: 10.13278/j.cnki.jjuese.201704306

Previous Articles     Next Articles

Inverse Direction Imaging Method of Array Type GPR Based on DOA Estimation

Zeng Zhaofa1, Li Wenben1, Xi Jianjun1,2, Huang Ling3, Wang Zhejiang1   

  1. 1. College of GeoExploration Science and Technology, Jilin University, Changchun 130026, China;
    2. Hebei Electric Power Design & Research Institute, Shijiazhuang 050031, China;
    3. Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2016-11-25 Online:2017-07-26 Published:2017-07-26
  • Supported by:
    Supported by the National Natural Science Foundation of China (40774055, 41174097, 41574097) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (20130061110060)

Abstract: Taking the target imaging of array type ground penetrating radar system as the topic, the authors analyzed the effect and accuracy of the estimation for target echo arrival upon direction of arrival (DOA) in theoretical modeling with three beam forming algorithms, i.e., least square (LS), Capon algorithm and amplitude phase estimation (APES), and put forward a method of array type GPR target imaging based on DOA estimation. This method images the target by integrating the target echo arrival signal estimated from multiple-input-multiple-output(MIMO)array signals with the spatial information obtained from multiple array observations, and localizes target and estimates reflection intensity by the imaging points weighted integral based on the DOA amplitude value estimated from each point by way of imaging points spatial scanning. This method is simple and efficient, and can be used widely in the rapid imaging of simple underground targets.

Key words: least squares (LS), Capon algorithm, amplitude and phase estimation (APES), DOA estimation, target imaging, ground penetrating radar(GPR)

CLC Number: 

  • P631.3
[1] Jabbarian-Jahromi M, Kahaei M H. Two-Dimensional SLIM with Application to Pulse Doppler MIMO Radars[J]. Eurasip Journal on Advances in Signal Processing, 2015(1):1-12.
[2] 王天云. 分布式雷达稀疏成像技术研究[D]. 合肥:中国科学技术大学, 2015: 3-25. Wang Tianyun. Research on Distributed Radar Sparse Imaging Technologies [D]. Hefei: University of Science and Technology of China,2015: 3-25.
[3] 习建军,曾昭发,黄玲,等. 阵列式探地雷达信号极化场特征[J].吉林大学学报(地球科学版),2017,47(2):633-644. Xi Jianjun, Zeng Zhaofa, Huang Ling, et al. Characteristics of the Signal Polarization Field in Array Type Ground Penetrating Radar[J/OL]. Journal of Jilin University (Earth Science Edition), 2017, 47(2): 633-644.
[4] Tan X,Roberts W, Li J, et al. Sparse Learning via Iterative Minimization with Application to MIMO Radar Imaging[J]. Signal Processing, 2014, 59(3):1088-1101.
[5] Xu L Z,Li J,Stoica P. Radar Imaging via Adaptive MIMO Techniques[C]//The 14th European Signal Processing Conference. [S. l.]: IET, 2006:1-5.
[6] Tabrikian J. Barankin Bounds for Target Localization by MIMO Radars[C]//Sensor Array and Multichannel Processing. [S. l.]: IEEE, 2006:278-281.
[7] 王鞠庭,江胜利.复合高斯杂波中MIMO雷达DOA估计的克拉美-罗下限[J].电子与信息学报,2009,31(4):786-789. Wang Juting,Jiang Shengli. Cramer-Rao Bounds of DOA Estimation for MIMO Radars in Compound -Gaussian Clutter[J]. Journal of Electronics & Information Technology, 2009, 31(4): 786-789.
[8] 夏威,何子述.APES算法在MIMO雷达参数估计中的稳健性研究[J].电子学报,2008,36(9):1804-1809. Xia Wei, He Zishu. On the Robustness of the APES Algorithm in the Parameter Estimation of MIMO Radars[J]. Acta Electronica Sinica, 2008, 36(9): 1804-1809.
[9] 韩兴斌,胡卫东,郁文贤,等.分布式多通道雷达成像技术[J].电子与信息学报,2007,29(10):2354-2358. Han Xingbin,Hu Weidong,Yu Wenxian,et al. An Imaging Technique Based on Distributed Multi-Channel Radars[J]. Journal of Electronics & Information Technology, 2007, 29(10): 2354-2358.
[10] Li N, Cui G, Kong L, et al. MIMO RadarMoving Target Detection Against Compound-Gaussian Clutter[J]. Circuits Systems & Signal Processing, 2014, 33(6):1-21.
[11] Ma X Y,Wang D W,Su Y. High-Resolution Imaging Using a Narrowband MIMO Radar System[C]//The 9th Internation Conference on Signal Processing. Beijing: IET, 2008:2263-2267.
[12] Wang H J,Su Y. Narrowband MIMO Radar Imaging with Two Orthogonal Linear T/R arrays[C]//The 9th Internation Conference on Signal Processing. Beijing: IET, 2008:2513-2516.
[13] Zeng Zhaofa, Li Jing,Huang Ling,et al. Improving Target Detection Accuracy Based on Multipolarization MIMO GPR[J]. Geosciences and Remote Sensing, 2015, 53(1): 15-24.
[14] Zhao Y N, Li F C, Zhang T, et al.Computational Design of Optimal Waveforms for MIMO Radar via Multi-Dimensional Iterative Spectral Approximation[J]. Multidimensional Systems & Signal Processing, 2016: 27(1): 1-18.
[15] Fuhnrmann D R, Antonio G S. Transmit Beamfo-nning for MIMO Radar Systems Using Partial Signal Correlation[C]//Conference Record of The 38th Asilmar Conference on Signals Systems and Computers. [S. l.]: IET, 2014:295-299.
[16] Liu X, Sun C, Zhuo J, et al. High-Resolution Swath Bathymetry Using MIMO Sonar System [J]. Journal of Systems Engineering and Electronics, 2014, 25(5): 761-768.
[1] Wang Wentian, Liu Sixin, Lu Qi, Li Hongqing, Fu Lei. 3D Imaging Algorithm of Directional Borehole Radar Based on Improved Residual Method [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(2): 402-410.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!