Journal of Jilin University(Earth Science Edition) ›› 2017, Vol. 47 ›› Issue (5): 1562-1571.doi: 10.13278/j.cnki.jjuese.201705304

Previous Articles     Next Articles

Seismic Data Time-Frequency Decomposition Based on Local Mean Decomposition

Zhang Xuebing, Liu Cai, Liu Yang, Wang Dian, Gou Fuyan   

  1. College of GeoExploration Science and Technology, Jilin University, Changchun 130026, China
  • Received:2016-12-07 Online:2017-09-26 Published:2017-09-26
  • Supported by:
    Supported by National Natural Science Foundation of China (41522404, 41430322)

Abstract: In seismic data analysis, it is a general case that seismic signal always displays nonstationary characteristics because of wave-attenuation effects. By time-frequency decomposition methods, such as short-time Fourier transform, wavelet transform, and empirical mode decomposition, seismic data can be decomposed into a set of stationary components, which are easier to be processed and interpreted. Following this idea, the paper introduces a new method named local mean decomposition (LMD). The LMD method can decompose seismic data into several product functions (PFs). Compared with the intrinsic mode functions (IMFs) by the EMD method, the PFs preserves more details and the mode mixing effect is weaker. The applications to model data and field data show that the LMD method can make the decomposition more properly, and capture the local character of seismic data from different time points.

Key words: local mean decomposition, empirical mode decomposition, time-frequency decomposition

CLC Number: 

  • P631.4
[1] Huang N E, Shen Z, Long S R, et al. The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis[J]. Proceedings of the Royal Society of London:Series A:Mathematical, Physical and Engineering Sciences, 1998, 454:903-995.
[2] Fomel S. Seismic Data Decomposition into Spectral Components Using Regularized Nonstationary Autoregression[J]. Geophysics, 2013, 78 (6):O69-O76.
[3] Liu J, Marfurt K. Instantaneous Spectral Attributes to Detect Channels[J]. Geophysics, 2007, 72 (2):P23-P31.
[4] Ebrom D. The Low-Frequency Gas Shadow on Seismic Sections[J]. The Leading Edge, 2004, 23 (8):772.
[5] Gabor D. Theory of Communication[J]. Journal of the Institute of Electrical Engineers, 1946, 93 (26):429-441.
[6] Chakraborty A, Okaya D. Frequency-Time Decom-position of Seismic Data Using Wavelet-Based Methods[J]. Geophysics, 1995, 60 (6):1906-1916.
[7] Sinha S, Routh P, Anno P, et al. Spectral Decom-position of Seismic Data with Continuous Wavelet Transform[J]. Geophysics, 2005, 70 (6):P19-P25.
[8] Pinnegar C R, Mansinha L. The S-Transform with Windows of Arbitrary and Varying Shape[J]. Geophysics, 2003, 68 (1):381-385.
[9] Stockwell R G, Mansinha L, Lowe R P. Localization of the Complex Spectrum:The S Transform[J]. IEEE Transactions on Signal Processing, 1996, 44 (4):998-1001.
[10] Liu Y, Fomel S. Seismic Data Analysis Using Local Time-Frequency Decomposition[J]. Geophysical Prospecting, 2013, 61 (3):516-525.
[11] 刘洋, 李炳秀, 刘财, 等. 局部时频变换域地震波吸收衰减补偿方法[J]. 吉林大学学报(地球科学版), 2016, 46 (2):594-602. Liu Yang, Li Bingxiu, Liu Cai, et al. Attenuation Compensation Method of Seismic Wave in the Local Time-Frequency Transform Domain[J]. Journal of Jilin University (Earth Science Edition), 2016, 46 (2):594-602.
[12] Chen Y, Fomel S. Emd-Seislet Transform[C]//SEG New Orleans 2015 Annual Meeting. New Orleans:SEG, 2015:4775-4778.
[13] Han J, Baan M V D. Empirical Mode Decomposition for Seismic Time-Frequency Analysis[J]. Geophysics, 2013, 78 (2):O9-O19.
[14] Pi H, Liu C, Wang D. Using Hilbert-Huang Trans-form to Pick up Instantaneous Parameters of Seismic Signal[J]. Oil Geophysical Prospecting, 2007, 42 (4):418-424.
[15] Wen X, He Z, Huang D. Reservoir Detection Based on EMD and Correlation Dimension[J]. Appl Geophys, 2009, 6(1):70-76.
[16] Wu Z, Huang N E. Ensemble Empirical Mode De-composition:A Noise-Assisted Data Analysis Method[J]. Advances in Adaptive Data Analysis, 2009, 1 (1):1-41.
[17] Smith J S. The Local Mean Decomposition and Its Application to EEG Perception Data[J]. Journal of the Royal Society Interface, 2005, 2 (5):443-454.
[18] Dai H, Xu A. A Comparative Study on Estimation of Instantaneous Frequency by Means of Lmd[C]//IEEE International Conference on Information and Automation. Yinchuan:IEEE, 2013:964-969.
[19] Wang W, Zhang W H, Han J G, et al. A New Wind Turbine Fault Diagnosis Method Based on the Local Mean Decomposition[J]. Renewable Energy, 2012, 48 (6):411-415.
[20] 程军圣, 张亢, 杨宇. 基于噪声辅助分析的总体局部均值分解方法[J]. 机械工程学报, 2011, 47 (3):55-62. Cheng Junsheng, Zhang Kang, Yang Yu. Ensemble Local Mean Decomposition Method Based on Noise-Assisted Analysis[J]. Chinese Journal of Mechanical Engineering, 2011, 47 (3):55-62.
[21] Herrera R H, Tary J B, Baan MV D. Time-Fre-quency Representation of Microseismic Signals Using the Synchrosqueezing Transform[C]//Geoconvention. Calgary:CSEG, 2013:
[22] Liu G, Fomel S, Chen X. Time-Frequency Analysis of Seismic Data Using Local Attributes[J]. Geophysics, 2011, 76 (6):P23-P34.
[1] Cai Jianhua, Xiao Xiao. De-Noising of Magnetotelluric Signal in the Ore Concentration Area Based on Combination Filter [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(3): 874-883.
[2] Qin Xiwen, Liu Yuanyuan, Wang Xinmin, Dong Xiaogang, Zhang Yu, Zhou Hongmei. PM2.5 Prediction of Beijing City Based on Ensemble Empirical Mode Decomposition and Support Vector Regression [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(2): 563-568.
[3] Liu Xia, Huang Yang, Huang Jing, Duan Zhiwei. Wavelet Entropy Threshold Seismic Signal Denoising Based on Empirical Mode Decomposition (EMD) [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(1): 262-269.
[4] Wang Zhenghai, Geng Xin, Yao Zhuosen, Hu Guangdao, Fang Chen. Like-Impulse Electromagnetic Noise Processing Based on Empirical Mode Decomposition [J]. Journal of Jilin University(Earth Science Edition), 2014, 44(1): 344-349.
[5] WANG Zhu-wen, WANG Xiao-li, LIU Jing-hua, ZHANG Xue-ang, XIANG Min, YANG Chuang. Joint Time Frequency Characteristics of Array Acoustic Logging Signals on Fractured Formation [J]. J4, 2012, 42(4): 914-920.
[6] DONG Lie-qan, LI Zhen-chun, LIU Lei, LI Zhi-na, SANG Yun-yun. A Method of Curvelet Threshold Denoising Based on Empirical Mode Decomposition [J]. J4, 2012, 42(3): 838-844.
[7] XI Xiao-yu, LIU Hong. The Application of HHT Method in Study of Seismic Cycle [J]. J4, 2007, 37(3): 624-0628.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!