Journal of Jilin University(Earth Science Edition) ›› 2018, Vol. 48 ›› Issue (2): 556-565.doi: 10.13278/j.cnki.jjuese.20170261

Previous Articles     Next Articles

Upper Crustal Structure of Tibetan Niangre Ore Concentration Area Revealed by Deep Seismic Reflection Profile

Xu Tairan1,2, Lu Zhanwu1,2, Wang Haiyan1,2, Li Hongqiang1,2, Li Wenhui1,2   

  1. 1. Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China;
    2. Key Laboratory of Earthprobe and Geodynamics, Ministry of Land and Resources, Beijing, 100037, China
  • Received:2017-09-29 Online:2018-03-26 Published:2018-03-26
  • Supported by:
    Supported by National Natural Science Foundation of China (41574091,41430213,41590863) and National Key Research Plan(2016YFC0600301)

Abstract: Deep seismic reflection technology is an important method to detect the deep structure of large-scale metallogenic belt and ore concentration area and reveal the background of mineralization. The authors explored the subsurface structure of the magmatic fluid passage in the vicinity of the Tibetan Niangre ore concentration area with iron, copper and other polymetallic deposits in the middle section of the Gangdese metallogenic belt, revealed the background of the mineralization and the corresponding fracture formation. Through the data processing such as tomostatics, de-noising, and predictive deconvolution of the 130 km deep seismic reflection profile crossing the Niangre ore concentration area, we obtained the reflected images of the upper crustal structure of the Niangre ore concentration area. Based on the geologic and geophysical data in this area, we studied the upper crustal structure of the ore concentration area, and found out the spatial relationship between the seven existing faults in the area and the distribution of the veins in the Gangdese metallogenic belt, and point out that some special structures such as the bright spot structure control the magma activity rising channel, and closely connected with the deposits.

Key words: deep reflection seismic, Niangre ore concentration area, Upper Crust, explanation, Gangdese metallogenic belt

CLC Number: 

  • P631.4
[1] Brown L D. A New Map of Crustal ‘Terranes’ in the United States from COCORP Deep Seismic Reflection Profiling[J]. Geophysical Journal International, 1991, 105(1):3-13.
[2] Cook F A. Geometry of the Kapuskasing Structure from a Lithoprobe Pilot Reflection Survey[J]. Geology, 1985, 13(5):368-371.
[3] Nelson K D, Zhang J. A COCORP Deep Reflection Profile Across the Buried Reelfoot Rift, South-Central United States[J]. Tectonophysics, 1991, 197(2/3/4):271-293.
[4] Gao Rui, Lu Zhanwu, Li Qiusheng, et al. Geophysical Survey and Geodynamic Study of Crust and Upper Mantle in the Qinghai-Tibet Plateau[J]. Episodes, 2005, 28(4):263.
[5] 王海燕, 高锐, 卢占武, 等. 深地震反射剖面揭露大陆岩石圈精细结构[J]. 地质学报, 2010, 84(6):818-839. Wang Haiyan, Gao Rui, Lu Zhanwu, et al. Fine Structure of the Continental Lithosphere Circle Revealed by Deep Seismic Reflection Profile[J]. Acta Geologica Sinica, 2010, 84(6):818-839.
[6] 王海燕, 高锐, 卢占武, 等. 地球深部探测的先锋:深地震反射方法的发展与应用[J]. 勘探地球物理进展, 2006, 29(1):7-13,19. Wang Haiyan, Gao Rui, Lu Zhanwu, et al. Precursor of Detecting the Interior Earth:Development and Applications of Deep Seismic Reflection[J]. Progress in Exploration Geophysics, 2006, 29(1):7-13,19.
[7] Pretorius C C, Trewick W F, Fourie A, et al. App-lication of 3-D Seismic to Mine Planning at Vaal Reefs Gold Mine, Number 10 Shaft, Republic of South Africa[J]. Geophysics, 2000, 65(6):1862-1870.
[8] 卢占武, 高锐, 李洪强, 等. 深反射地震数据揭示的拉萨地体北部到羌塘地体南部地壳厚度的变化[J]. 中国地质, 2016, 43(5):1679-1687. Lu Zhanwu, Gao Rui, Li Hongqiang, et al. Crustal Thickness Variation from Northern Lhasa Terrane to Southern Qiangtang Terrane Revealed by Deep Seismic Reflection Data[J]. Geology in China, 2016, 43(5):1679-1687.
[9] 王海燕, 高锐, 卢占武, 等. 国内外深反射地震研究的进展及应用研究[J]. 中国西部油气地质, 2005, 1(1):97-103. Wang Haiyan,Gao Rui, Lu Zhanwu, et al. Progress and Application of Deep Seismic Reflection Research Domestic and Overseas[J]. West China Petroleum Geosciences, 2005, 1(1):97-103.
[10] Goleby B R, Huston D L, Lyons P, et al. The Tanami Deep Seismic Reflection Experiment:An Insight into Gold Mineralization and Paleoproterozoic Collision in the North Australian Craton[J]. Tectonophysics, 2009, 472(1):169-182.
[11] 吕庆田, 侯增谦, 赵金花, 等. 深地震反射剖面揭示的铜陵矿集区复杂地壳结构形态[J]. 中国科学:D辑, 2003, 33(5):442-449. Lü Qingtian, Hou Zengqian, Zhao Jinhua, et al. Deep Seismic Reflection Profile Revealed the Complex Crustal Structure of Tongling Ore District[J]. Science in China:Series D, 2003, 33(5):442-449.
[12] Chang Chengfa, Zeng Shilang. Tectonic Features of the Mount Jolmo Lungma Region in Southern Tibet, China[J]. Chinese Journal of Geology, 1973, 1:1-12.
[13] 尹安. 喜马拉雅-青藏高原造山带地质演化:显生宙亚洲大陆生长[J]. 地球学报, 2001, 22(3):193-230. Yin An. Geological Evolution of the Orogenic Belt in the Tibetan Plateau:The Growth of the Phanerozoic in the Asian Continent[J]. Acta Geoscientia Sinica, 2001, 22(3):193-230.
[14] Yin Jixiang, Xu Juntao, Liu Chengjie, et al. The Tibetan Plateau:Regional Stratigraphic Context and Previous Work[J]. Philosophical Transactions of the Royal Society of London:A:Mathematical, Physical and Engineering Sciences, 1988, 327(1594):5-52.
[15] Liu Z Q. Geologic Map of the Qinghai-Xizang Plateau and Its Neighboring Regions (Scale at 1:1500000)[R]. Chengdu:Chengdu Institute of Geology and Mineral Resources, 1988.
[16] 谢玉玲, 李应栩, 白劲松, 等. 西藏恰功铁矿岩浆演化序列及斑岩出溶流体特征[J]. 地质学报, 2009, 83(12):1869-1886. Xie Yuling, Li Yingxu, Bai Jinsong, et al. Magmatic Evolution and Characteristics of Magmatic Fluid in the Qiagong Porphyry System[J]. Acta Geologica Sinica, 2009, 83(12):1869-1886.
[17] 于玉帅, 杨竹森, 多吉, 等. 西藏加多捕勒铁铜矿成矿岩体时代与成因:锆石U-Pb年龄, Hf同位素与稀土元素证据[J]. 矿床地质, 2011, 30(3):420-434. Yu Yushuai, Yang Zhusen,Duo Ji, et al. Age and Petrogenesis of Magmatic Rocks from Jiaduobule Skarn Fe-Cu Deposit in Tibet:Evidence from Zircon SHRIMP U-Pb Dating, Hf Isotope and REE[J]. Mineral Deposits, 2011, 30(03):420-434.
[18] 纪现华, 杨竹森, 于玉帅, 等. 西藏纳如松多铅锌矿床成矿岩体形成机制:岩浆锆石证据[J]. 矿床地质, 2012, 31(4):758-774. Ji Xianhua, Yang Zhusen, Yu Yushuai, et al. Formation Mechanism of Magmatic Rocks in Narusongduo Lead-Zinc Deposit of Tibet:Evidence from Magmatic Zircon[J]. Mineral Deposits, 2012, 31(4):758-774.
[19] 贾海青, 姜弢, 徐学纯,等. 辽西深反射地震勘探采集试验[J].吉林大学学报(地球科学版), 2014,44(4):1357-1368. Jia Haiqing, Jiang Tao, Xu Xuechun, et al. Field Test on Deep Seismic Reflection Acquisition in the West of Liaoning Province[J]. Journal of Jilin University (Earth Science Edition), 2014, 44(4):1357-1368.
[20] Peacock K L, Treitel S. Predictive Deconvolution:Theory and Practice[J]. Geophysics, 1969, 34(2):155-169.
[21] 王兆旗. 预测反褶积及其相关问题分析[D]. 西安:长安大学, 2007. Wang Zhaoqi. Analysis of Predictive Deconvolution and the Related Issues[D]. Xi'an:Chang'an University,2007.
[22] 徐泰然, 卢占武, 王海燕, 等. 深反射地震剖面数据处理的主要技术方法[J]. 地球物理学进展, 2017, 32(2):762-774. Xu Tairan, Lu Zhanwu, Wang Haiyan, et al. Main Technology of Deep Seismic Reflection Data Processing[J]. Progress in Geophysics, 2017, 32(2):762-774.
[23] 王海燕, 高锐, 薛爱民,等. 适用于造山带深地震反射资料的动校正方法[J]. 吉林大学学报(地球科学版), 2006, 36(4):622-626. Wang Haiyan, Gao Rui, Xue Aimin, et al.A NMO Method Adapted to Deep Seismic Reflection in Orogenic Belt[J]. Journal of Jilin University (Earth Science Edition), 2006, 36(4):622-626.
[24] 卢占武, 高锐, 王海燕, 等. 深地震反射剖面上的"亮点" 构造[J]. 地球物理学进展, 2014,29(6):2518-2525. Lu Zhanwu, Gao Rui, Wang Haiyan, et al. Bright Spots in Deep Seismic Reflection Profiles[J]. Progress in Geophysics, 2014, 29(6):2518-2525.
[1] Lu Yanhong, Wu Zhaoying, Ding Guang, Fu Qi, Zhang Fan. Upper Crustal Velocity Structure in Qianguo M5.8 Earthquake Region [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(6): 1894-1903.
[2] Wei Danning, Fu Guang. Quantitative Explanation of Mechanism About Lower Wall of Antithetic Faults Accumulating More Oil-Gas than Upper Wall of Consequent Faults [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(3): 702-710.
[3] Duan Zhiming, Li Guangming, Wang Baodi, Li Yingxu, Huang Yong, Guo Lin, Duan Yaoyao. Geochronology and Its Geological Significance of the Ore-Bearing Porphyry in Chagele Lead-Zinc Deposit in Middle-Gangdese Metallogenic Belt, Tibet [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(6): 1667-1690.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!