Journal of Jilin University(Earth Science Edition) ›› 2018, Vol. 48 ›› Issue (6): 1889-1897.doi: 10.13278/j.cnki.jjuese.20170310
Wei Wei, Zhou Yunxuan, Tian Bo, Qian Weiwei, Zhan Yujian, Huang Gaixian
CLC Number:
[1] 陈吉余, 程和琴, 戴志军. 滩涂湿地利用与保护的协调发展探讨:以上海市为例[J]. 中国工程科学, 2007, 9(6):11-17. Chen Jiyu, Cheng Heqin, Dai Zhijun. Compatibility of Utilization and Protection of Tidal Flat and Wetland:A Case Study in Shanghai Area[J]. Engineering Science, 2007, 9(6):11-17. [2] 王卿.长江口盐沼植被群落分布动态及互花米草入侵的影响[D]. 上海:复旦大学, 2007. Wang Qing. The Dynamics of Plant Community Distribution of the Salt Marshes in the Yangtze River Estuary as Influenced by Spartina Alterniflora Invasions[D]. Shanghai:Fudan University, 2007. [3] 袁兴中, 陆健健, 刘红. 河口盐沼植物对大型底栖动物群落的影响[J]. 生态学报, 2002, 22(3):326-333. Yuan Xingzhong, Lu Jianjian, Liu Hong. Influence of Characteristics of Scirpus Mariqueter Community on the Benthic Macro-Invertebrate in a Salt Marsh of the Changjiang Estuary[J]. Acta Ecologica Sinica, 2002, 22(3):326-333. [4] 常直杨, 王建, 李晶冰,等. 基于地面激光扫描仪的潮滩地貌研究初探[J]. 海洋通报, 2016, 35(3):258-263. Chang Zhiyang, Wang Jian, Li Jingbing, et al. Preliminary Study About the Geomorphology in the Tidal Flat Based on the Terrestrial Laser Scanning[J]. Marine Science Bulletin, 2016, 35(3):258-263. [5] Hannam M, Moskal L. Terrestrial Laser Scanning Reveals Seagrass Microhabitat Structure on a Tideflat[J]. Remote Sensing, 2015, 7(3):3037-3055. [6] Guarnieri A, Vettore A, Pirotti F, et al. Retrieval of Small-Relief Marsh Morphology from Terrestrial Laser Scanner, Optimal Spatial Filtering, and Laser Return Intensity[J]. Geomorphology, 2009, 113(1/2):12-20. [7] 高占国. 长江口盐沼植被的光谱特征研究[D]. 上海:华东师范大学, 2006. Gao Zhanguo. A Study on the Spectral Characteristics of Salt Marsh Vegetation in Yangtze Estuary[D]. Shanghai:East China Normal University, 2006. [8] 陈勇, 何中发, 黎兵,等. 崇明东滩潮沟发育特征及其影响因素定量分析[J]. 吉林大学学报(地球科学版), 2013, 43(1):212-219. Chen Yong, He Zongfa, Li Bing, et al. Spatial Distribution of Tidal Creeks and Quantitative Analysis of Its Driving Factors in Chongming Dongtan, Shanghai[J]. Journal of Jilin University (Earth Science Edition), 2013, 43(1):212-219. [9] 李贺鹏, 张利权, 王东辉. 上海地区外来种互花米草的分布现状[J]. 生物多样性, 2006, 14(2):114-120. Li Hepeng, Zhang Liquan, Wang Donghui. Distribution of an Exotic Plant Spartina Alterniflora in Shanghai[J]. Biodiversity Science, 2006, 14(2):114-120. [10] 张云霞, 张云飞, 李晓兵. 地面测量与ASTER影像综合计算植被盖度[J]. 生态学报, 2007, 27(3):964-976. Zhang Yunxia, Zhang Yunfei, Li Xiaobing. The Synthetically Estimating Vegetation Fractional Coverage of Grassland Using Field Data and ASTER Remote Sensing in Agine[J]. Acta Ecologica Sinica, 2007, 27(3):964-976. [11] 孙智慧, 陆声链, 郭新宇,等. 基于点云数据的植物叶片曲面重构方法[J]. 农业工程学报, 2012, 28(3):184-190. Sun Zhihui, Lu Shenglian, Guo Xinyu, et al. Surfaces Reconstruction of Plant Leaves Based on Point Cloud Data[J]. Transactions of the CSAE, 2012, 28(3):184-190. [12] Petzold B. Results of the OEEPE WG on Laser Data Acquisitions[J]. International Archives of Photogrammetry and Remote Sensing, 2000, 33:718-741. [13] Coveney S, Fotheringham A S. Terrestrial Laser Scan Error in the Presence of Dense Ground Vegetation[J]. Photogrammetric Record, 2011, 26:307-324. [14] Latypov D. Estimating Relative Lidar Accuracy Infor-mation from Overlapping Flight Lines[J]. Isprs Journal of Photogrammetry & Remote Sensing, 2002, 56(4):236-245. [15] Wang C, Menenti M, Stoll M P, et al. Separation of Ground and Low Vegetation Signatures in LiDAR Measurements of Salt-Marsh Environments[J]. IEEE Transactions on Geoscience & Remote Sensing, 2009, 47(7):2014-2023. [16] Fan L, Powrie W, Smethurst J, et al. The Effect of Short Ground Vegetation on Terrestrial Laser Scans at a Local Scale[J]. Isprs Journal of Photogrammetry & Remote Sensing, 2014, 95(3):42-52. [17] Ge Z, Shi H, Mei X, et al. Semi-Automatic Reco-gnition of Marine Debris on Beaches[J]. Scientific Reports, 2016, 6:25759. |
|