Journal of Jilin University(Earth Science Edition) ›› 2021, Vol. 51 ›› Issue (2): 442-454.doi: 10.13278/j.cnki.jjuese.20200058
Li Jie, Huang Hongye, Liu Zijie, Zhang Tao, Wang Qianlin, Jiang Hong'an, Zou Mingliang
CLC Number:
[1] Walker G P L, Eyre P R. Dike Complexes in American Samoa[J]. Journal of Volcanology and Geothermal Research, 1995, 69(3/4):241-254. [2] 李献华,胡瑞忠,饶冰.粤北白垩纪基性岩脉的年代学和地球化学[J]. 地球化学, 1997, 26(2):14-31. Li Xianhua, Hu Ruizhong, Rao Bing. Geochronology and Geochemistry of Cretaceous Mafic Dikes from Northern Guangdong, SE China[J]. Geochimica, 1997, 26(2):14-31. [3] 王学成,章邦桐,张祖还. 暗色岩脉与铀成矿关系研究[J]. 矿床地质, 1991, 10(4):359-370. Wang Xuecheng, Zhang Bangtong, Zhang Zuhuan. A Study of the Relationship Between the Dark Dyke and the Uranium Mineralization[J]. Mineral Deposits, 1991, 10(4):359-370. [4] 夏宗强,李建红. 贵东-诸广山地区白垩纪中基性岩脉特征及其与铀成矿关系[J]. 矿物学报, 2009,29(增刊1):641-643. Xia Zongqiang, Li Jianhong. The Characteristics of Cretaceous Mafic Dikes and Its Relationship with Uranium Mineralization in Guidong-Zhuguangshan Area[J]. Acta Mineralogica Sinica, 2009,29(Sup.1):641-643. [5] 邓平,舒良树,谭正中. 诸广-贵东大型铀矿聚集区富铀矿成矿地质条件[J]. 地质论评, 2003, 49(5):486-494. Deng Ping, Shu Liangshu, Tan Zhengzhong. The Geological Setting for the Formation of Rich Uranium Ores in Zhuguang-Guidong Large-Scale Uranium Metallogenetic Area[J]. Geological Review, 2003,49(5):486-494. [6] 朱捌. 地幔流体与铀成矿作用研究:以诸广山南部铀矿田为例[D]. 成都:成都理工大学, 2010. Zhu Ba. The Study of Mantle Liquid and Uranium Metallogenesis:Take Uranium Ore Field of South Zhuguang Mountain as an Example[D]. Chengdu:Chengdu University of Technology, 2010. [7] 曹豪杰,黄国龙,许丽丽,等. 诸广花岗岩体南部油洞断裂带辉绿岩脉的40Ar-39Ar年龄及其地球化学特征[J]. 地质学报, 2013, 87(7):957-966. Cao Haojie, Huang Guolong, Xu Lili, et al. The 40Ar-39Ar Age and Geochemical Characteristics of Diabase Dykes of the Youdong Fault Zone in South of Zhuguang Granite Pluton[J]. Acta Geologica Sinica, 2013, 87(7):957-966. [8] 骆金诚,齐有强,王连训,等. 粤北下庄铀矿田基性岩脉Ar-Ar定年及其与铀成矿关系新认识[J]. 岩石学报, 2019, 35(9):2660-2678. Luo Jincheng, Qi Youqiang, Wang Lianxun, et al.Ar-Ar Dating of Mafic Dykes from the Xiazhuang Uranium Ore Field in Northern Guangdong, South China:A Reevaluation of the Role of Mafic Dyke in Uranium Mineralization[J]. Acta Petrologica Sinica, 2019, 35(9):2660-2678. [9] Wang L X, Ma C Q, Lai Z X, et al. Early Jurassic Mafic Dykes from the Xiazhuang Ore District (South China):Implications for Tectonic Evolution and Uranium Metallogenesis[J]. Lithos, 2015, 239:71-85. [10] Zhang L, Chen Z Y, Li X F, et al. Zircon U-Pb Geochronology and Geochemistry of Granites in the Zhuguangshan Complex, South China:Implications for Uranium Mineralization[J]. Lithos, 2018, 308/309:19-33. [11] 田晓龙. 诸广山-贵东地区基性岩脉的地球化学特征及其与铀矿的关系[D]. 北京:中国地质大学(北京), 2016. Tian Xiaolong. Geochemistry Characteristics and Relationship with Uranium Deposite of Zhuguang Mountain and Guidong Region[D]. Beijing:China University of Geoscience(Beijing), 2016. [12] 夏宗强,李建红. 桃山-诸广-贵东地区基性岩脉岩石化学特征及其地质意义[J]. 世界核地质科学, 2008, 25(4):203-210. Xia Zongqiang, Li Jianhong. Petrochemical Characteristics of Basic Dikes and Its Geological Significance in Taoshan-Zhuguang-Guidong Area[J]. World Nuclear Geoscience, 2008, 25(4):203-210. [13] 陈学明. 粤北地区辉绿岩的特征及其地质意义[J]. 现代地质, 1996, 10(3):91-98. Chen Xueming. Characteristics of Diabases in North Guangdong and Their Geological Significance[J]. Geoscience, 1996, 10(3):91-98. [14] 朱捌,凌洪飞,沈渭洲,等. 粤北下庄矿田晚白垩世辉绿玢岩的地球化学特征及其构造意义[J]. 地质论评, 2008, 54(1):26-36. Zhu Ba, Ling Hongfei, Shen Weizhou, et al. Geochemical Characteristics of Late Cretaceous Diabase Prophyrite Dikes in the Xiazhuang Uranium Orefield, Northern Guangdong Province and Its Tectonic Significance[J]. Geological Review, 2008, 54(1):26-36. [15] 李献华. 诸广山岩体内中基性岩脉的成因初探:Sr、Nd、O同位素证据[J]. 科学通报, 1990, 35(16):1247-1249. Li Xianhua. The Origin of the Mafic Dykes in the Zhuguangshan Pluton:Evidence from Sr-Nd-O Isotopes[J]. Chinese Science Bulletin, 1990, 35(16):1247-1249. [16] 陆建军,吴烈勤,凌洪飞,等. 粤北下庄铀矿田黄陂-张光营辉绿岩脉的成因:元素地球化学和Nd-Sr-Pb-O同位素证据[J]. 岩石学报, 2006, 22(2):397-406. Lu Jianjun, Wu Lieqin, Ling Hongfei, et al. The Origin of the Huangpi-Zhangguangying Diabase Dykes in the Xiazhuang Uranium Ore District of Northern Guangdong Province:Evidence from Trace Elements and Nd-Sr-Pb-O Isotopes[J]. Acta Petrologica Sinica,2006, 22(2):397-406. [17] Ling Hongfei, Shen Weizhou, Deng Ping, et al. Geochemical Characteristics and Genesis of the Luxi-Xianrenzhang Diabase Dikes in Xiazhuang Uranium Orefield, Northern Guangdong Province[J]. Acta Geologica Sinica, 2005, 79(4):497-506. [18] 詹礼贵,祝民强,祁家明,等. 诸广岩体南部辉绿岩脉特征及其与铀成矿关系[J]. 科学技术与工程, 2015, 15(19):1-9. Zhan Ligui, Zhu Minqiang, Qi Jiaming, et al. Diabase Dikes in Southern Zhuguang Granitic Batholith:Its Charactristics and Relationship with Uranium Mineralization[J]. Science Technology and Engineering, 2015, 15(19):1-9. [19] 李献华. 万洋山-诸广山花岗岩复式岩基的岩浆活动时代与地壳运动[J]. 中国科学:B辑, 1990, 20(7):747-755. Li Xianhua. Magmatism Age and Crustal Movement of the Granite Matrix of Wanyangshan-Zhuguangshan[J]. Science in China:Series B, 1990, 20(7):747-755. [20] 蒋红安,邹明亮,欧阳平宁,等. 华南诸广山岩体中段岩脉40Ar-39Ar年龄及与铀成矿关系[J]. 地质通报, 2020, 39(5):728-734. Jiang Hong'an,Zou Mingliang,OuYang Pingning, et al. 40Ar-39Ar Age of the Late Stage Veins in Central Zhuguangshan Pluton of South China and Its Relationship with Uranium Metallogenesis[J]. Geological Bulletin of China, 2020, 39(5):728-734. [21] 赵振华,包志伟,张伯友. 湘南中生代玄武岩类地球化学特征[J]. 中国科学:D辑, 1998, 28(增刊2):7-14. Zhao Zhenhua, Bao Zhiwei, Zhang Boyou. Geochemical Characteristics of Mesozoic Basalt in Southern Hunan[J]. Science in China:Series D, 1998, 28(Sup.2):7-14. [22] Bonnetti C, Liu X D, Mercadier J, et al. The Genesis of Granite-Related Hydrothermal Uranium Deposits in the Xiazhuang and Zhuguang Ore Fields, North Guangdong Province, SE China:Insights from Mineralogical, Trace Elements and U-Pb Isotopes Signatures of the U Mineralisation[J]. Ore Geology Reviews, 2018, 92:588-612. [23] 胡宝群,白丽红,潘天有,等. 竹山下矿床中的早期高温铀成矿作用[J]. 华东地质学院学报, 2003, 26(4):311-320. Hu Baoqun, Bai Lihong, Pan Tianyou, et al. The Early High-Temperature Uranium Mineralization in Zhushanxia Deposit[J]. Journal of East China Geological Institute, 2003, 26(4):311-320. [24] 胡瑞忠,毕献武,苏文超,等. 华南白垩-第三纪地壳拉张与铀成矿的关系[J]. 地学前缘, 2004, 11(1):153-160. Hu Ruizhong, Bi Xianwu, Su Wenchao, et al. The Relationship Between Uranium Metallogenesis and Crustal Extension During the Cretaceous-Tertiary in South China[J]. Earth Science Frontiers, 2004, 11(1):153-160. [25] Hu R Z, Bi X W. Uranium Metallogenesis in South China and Its Relationship to Crustal Extension During the Cretaceous to Tertiary[J]. Economic Geology, 2008, 103(3):583-598. [26] Luo J C, Hu R Z, Fayek M, et al. In-Situ SIMS Uraninite U-Pb Dating and Genesis of the Xianshi Granite-Hosted Uranium Deposit, South China[J]. Ore Geology Reviews, 2015, 65:968-978. [27] 胡瑞忠,毕献武,彭建堂,等. 华南地区中生代以来岩石圈伸展及其与铀成矿关系研究的若干问题[J]. 矿床地质, 2007, 26(2):139-152. Hu Ruizhong, Bi Xianwu, Peng Jiantang, et al. Some Problems Concerning Relationship Between Mesozoci-Cenozoic Lithospheric Extension and Uranium Metallogenesis in South China[J]. Mineral Deposits, 2007, 26(2):139-152. [28] Zhang X T, Pan J Y, Xia F, et al. Genesis and Metallogenic Process of the Lujing Uranium Deposit, Southwest Jiangxi Province, China:Constraints of Micropetrography and S-C-O Isotopes[J]. Resource Geology, 2018, 68(3):303-325. [29] 李军杰,刘汉彬,张佳,等. 应用Argus多接收稀有气体质谱仪准确测量空气的Ar同位素组成[J]. 岩矿测试, 2016, 35(3):229-235. Li Junjie, Liu Hanbin, Zhang Jia, et al. Accurate Measurement of Argon Isotope Composition of Air by Argus Multi-Collector Noble Gas Mass Spectrometer[J]. Rock and Mineral Analysis, 2016, 35(3):229-235. [30] McDougall I, Harrison T M. Geochronology and Thermochronology by the 40Ar/39Ar Method[M]. 2nd Ed. New York:Oxford University Press, 1999. [31] Bai X J, Qiu H N, Liu W G, et al. Automatic 40Ar/39Ar Dating Techniques Using Multicollector ARGUS VI Noble Gas Mass Spectrometer with Self-Made Peripheral Apparatus[J]. Journal of Earth Science, 2018, 29(2):408-415. [32] Koppers A A P. ArArCALC-Software for 40Ar/39Ar Age Calculations[J]. Computers & Geosciences, 2002, 28(5):605-619. [33] Zeitler P K, Gerald J D F. Saddle-Shaped 40Ar/39Ar Age Spectra from Young, Microstructurally Complex Potassium Feldspars[J]. Geochimica et Cosmochimica Acta, 1986, 50(6):1185-1199. [34] 李正华,戴橦谟,邱华宁. 40Ar(40Ar*+40ArE)、39Ar释气特征与过剩氩的甄别及年代学意义[J]. 地质科学, 1995, 30(1):40-46. Li Zhenghua, Dai Tongmo, Qiu Huaning. The Release of 40Ar(40Ar*+40ArE) and 39Ar in 40Ar/39Ar Samples and Its Chronological Significance[J]. Scientia Geologica Sinica, 1995, 30(1):40-46. [35] 陈福川,王庆飞,李龚健,等. 滇西哀牢山镇沅煌斑岩40Ar-39Ar年代学和地球化学特征[J].岩石学报, 2015, 31(11):3203-3216. Chen Fuchuan, Wang Qingfei, Li Gongjian, et al.40Ar-39Ar Chronological and Geochemical Characteristics of Zhenyuan Lamprophyres in Ailaoshan Belt, Western Yunnan[J]. Acta Petrological Sinica, 2015, 31(11):3203-3216. [36] 王非,师文贝,朱日祥. 40Ar/39Ar年代学中几个重要问题的讨论[J]. 岩石学报, 2014, 30(2):326-340. Wang Fei, Shi Wenbei, Zhu Rixiang. Problems of Modern 40Ar/39Ar Geochronology:Reviews[J]. Acta Petrological Sinica, 2014, 30(2):326-340. [37] Li X H. Cretaceous Magmatism and Lithospheric Extension in Southeast China[J]. Journal of Asian Earth Sciences, 2000, 18(3):293-305. [38] Chen P R, Hua R M, Zhang B T, et al. Early Yanshanian Post-Orogenic Granitoids in the Nanling Region:Petrological Constraints and Geodynamic Settings[J]. Science in China:Series D, 2002, 45(8):755-768. [39] Zhang D, Zhao K D, Chen W, et al. Early Jurassic Mafic Dykes from the Aigao Uranium Ore Deposit in South China:Geochronology, Petrogenesis and Relationship with Uranium Mineralization[J]. Lithos, 2018, 308/309:118-133. [40] 饶泽煌. 江西相山铀矿田基性岩特征及意义研究[D].南昌:东华理工大学, 2012. Rao Zehuang. Mafic Geochemical Characteristics and Its Research Significance of Xiangshan Uranium Ore-Field, Jiangxi Province[D]. Nanchang:East China Institute of Technology, 2012. [41] 孔华,许明珠,张强,等. 湘南道县辉长岩包体的锆石LA-ICP-MS定年、Hf同位素组成及其地质意义[J].吉林大学学报(地球科学版), 2016, 46(3):627-638. Kong Hua, Xu Mingzhu, Zhang Qiang, et al. LA-ICP-MS Zircon U-Pb Dating and Hf Isotope Feature of Gabbro Xenolith and Its Geological Significance in Huziyan Basalt of Daoxian County, Southern Hunan Province[J]. Journal of Jilin University(Earth Science Edition), 2016, 46(3):627-638. [42] 陈培荣. 华南东部中生代岩浆作用的动力学背景及其与铀成矿关系[J].铀矿地质, 2004, 20(5):266-270. Chen Peirong. GeodynamicSetting of Mesozoic Magmatism and Its Relationship to Uranium Metallogenesis in Southeastern China[J]. Uranium Geology, 2004, 20(5):266-270. [43] Ye H M, Mao J R, Zhao X L, et al. Revisiting Early-Middle Jurassic Igneous Activity in the Nanling Mountains, South China:Geochemistry and Implications for Regional Geodynamics[J]. Journal of Asian Earth Sciences, 2013, 72:108-117. [44] Hoek J D, Seitz H M. Continental Mafic Dyke Swarms as Tectonic Indicators:An Example from the Vestfold Hills, East Antarctica[J]. Precambrian Research, 1995, 75(3/4):121-139. [45] 陈文,万渝生,李华芹,等. 同位素地质年龄测定技术及应用[J]. 地质学报, 2011, 85(11):1917-1947. Chen Wen, Wan Yusheng, Li Huaqin, et al. Isotope Geochronology:Technique and Application[J]. Acta Geologica Sinica, 2011, 85(11):1917-1947. [46] Lee J Y, Marti K, Severinghaus J P, et al. A Redetermination of the Isotopic Abundances of Atmospheric Ar[J]. Geochimica et Cosmochimica Acta, 2006, 70(17):4507-4512. [47] 杜泽忠,程志中,姚晓峰,等.胶东谢家沟金矿床蚀变钾长石40Ar-39Ar年龄及地质意义[J].吉林大学学报(地球科学版),2020,50(5):1570-1581. Du Zezhong, Cheng Zhizhong, Yao Xiaofeng, et al. 40Ar-39Ar Age of Altered Potash Feldspar of Xiejiagou Gold Deposit in Jiaodong and Its Geological Significance[J]. Journal of Jilin University(Earth Science Edition), 2020, 50(5):1570-1581. [48] 董树文,张岳桥,赵越,等. 中国大陆中-新生代构造演化与动力学分析[M]. 北京:科学出版社, 2016. Dong Shuwen, Zhang Yueqiao, Zhao Yue, et al. Tectonic Evolution and Dynamic Analysis of the Meso-Cenozoic in Mainland China[M]. Beijing:Science Press, 2016. [49] 张金带,简晓飞,李友良,等. "十一五"铀矿勘查和地质科技进展及"十二五"总体思路[J]. 铀矿地质, 2011, 27(1):1-7. Zhang Jindai, Jian Xiaofei, Li Youliang, et al. Progress in 11th Five Year and the Geneal Idea for 12th Five Year of Uranium Exploration and Geological Science and Technology[J]. Uranium Geology, 2011, 27(1):1-7. [50] 杜乐天. 中国热液铀矿基本成矿规律和一般热液成矿学[M]. 北京:原子能出版社, 2001. Du Letian. Basic Metallogenic Law and General Hydrothermal Metallogenesis of Hydrothermal Uranium Deposits in China[M]. Beijing:Atomic Energy Publishing House, 2001. [51] 杜乐天,王文广. 华南花岗岩型铀矿找矿新目标:绢英岩化铀矿类型[J]. 铀矿地质, 2009, 25(2):85-90. Du Letian, Wang Wenguang. New Exploration Target for Granite-Type Uranium Deposits in South China:A Case Study on Uranium Mineralization of Sericitic Alteration[J]. Uranium Geology, 2009, 25(2):85-90. [52] 吴俊奇,闵茂中,翟建平,等. 华南诸广山复式岩体中段花岗岩的碱交代蚀变[J]. 岩石学报, 1998, 14(1):91-99. Wu Junqi,Min Maozhong, Zhai Jianping, et al. Alkali Metasomatic Alteration of the Granite in Middle Zhuguang Mountain, South China[J]. Acta Petrological Sinica, 1998, 14(1):91-99. [53] Min M Z, Luo X Z, Du G S, et al. Mineralogical and Geochemical Constraints on the Genesis of the Granite-Hosted Huangao Uranium Deposit, SE China[J]. Ore Geology Reviews, 1999, 14(2):105-127. [54] 张爱,刘成东,余志灵,等. 诸广南部铀矿区碱交代岩特征及同位素年代学研究[J]. 东华理工大学学报(自然科学版), 2009, 32(3):209-212. Zhang Ai, Liu Chengdong, Yu Zhiling, et al. The Features and Geochronology of Alkali Metasomatic Rock in Southern Zhuguang Uranium Mineralization Area[J]. Journal of East China Institute of Technology, 2009, 32(3):209-212. [55] 杜乐天. 中国热液铀矿成矿理论体系[J]. 铀矿地质, 2011, 27(2):65-68. Du Letian. On the Theory of Hydrothermal Uranium Metalization in China[J]. Uranium Geology, 2011, 27(2):65-68. [56] 陈跃辉,陈祖伊,蔡煜琦,等. 华东南中新生代伸展构造时空演化与铀矿化时空分布[J]. 铀矿地质, 1997, 13(3):129-138. Chen Yuehui, Chen Zuyi, Cai Yuqi, et al. Space-time Evolution of Meso-Cenozoic Extensional Tectonics and Distributions of Uranium Mineralizations in Southeastern China[J]. Uranium Geology, 1997, 13(3):129-138. [57] 吴烈勤,谭正中,刘汝洲,等. 粤北下庄矿田铀矿成矿时代探讨[J]. 铀矿地质, 2003, 19(1):28-33. Wu Lieqin, Tan Zhengzhong, Liu Ruzhou, et al. Discussion on Uranium Ore-Formation Age in Xiazhuang Ore-Field, Northern Guangdong[J]. Uranium Geology, 2003, 19(1):28-33. [58] 刘翔,包云河,杨尚海,等. 中南铀矿地质志[R]. 北京:中国核工业地质局, 2005. Liu Xiang, Bao Yunhe, Yang Shanghai, et al. Uranium Geology of Central South China[R]. Beijing:China Nuclear Geology, 2005. [59] 张国全,胡瑞忠,商朋强,等. 302铀矿床方解石C-O同位素组成与成矿动力学背景研究[J]. 矿物学报, 2008, 28(4):413-420. Zhang Guoquan, Hu Ruizhong, Shang Pengqiang, et al. Study on the C-O Isotopic Composition of Calcites and Metallogenic Dynamics Background in the No.302 Uranium Deposit[J]. Acta Mineralogica Sinica, 2008, 28(4):413-420. [60] 王正其,李子颖,吴烈勤,等. 幔源铀成矿作用的地球化学证据:以下庄小水"交点型"铀矿床为例[J]. 铀矿地质, 2010, 26(1):24-34. Wang Zhengqi, Li Ziying, Wu Lieqin, et al. Geochemical Evidences for Mantle-Derived Uranium Metallogenesis:A Case Study of Xiaoshui Intersection-Type Uranium Deposit in Xiazhuang Area[J]. Uranium Geology, 2010, 26(1):24-34. [61] 黄国龙,尹征平,凌洪飞,等. 粤北地区302矿床沥青铀矿的形成时代、地球化学特征及其成因研究[J]. 矿床地质, 2010, 29(2):352-360. Huang Guolong, Yin Zhengping, Ling Hongfei, et al. Formation Age, Geochemical Characteristics and Genesis of Pitchblende from No.302 Uranium Deposit in Northern Guangdong[J]. Mineral Deposits, 2010, 29(2):352-360. [62] 邹东风,李方林,张爽,等. 粤北下庄335矿床成矿时代的厘定:来自LA-ICP-MS沥青铀矿U-Pb年龄的制约[J]. 矿床地质, 2011, 30(5):912-922. Zou Dongfeng, Li Fanglin, Zhang Shuang, et al. Timing of No.335 Ore Deposit in Xiazhuang Uranium Orefield, Northern Guangdong Province:Evidence from LA-ICP-MS U-Pb Dating of Pitchblende[J]. Mineral Deposits, 2011, 30(5):912-922. [63] 张龙,陈振宇,李胜荣,等. 粤北棉花坑(302)铀矿床围岩蚀变分带的铀矿物研究[J]. 岩石学报, 2018, 34(9):2657-2670. Zhang Long, Chen Zhenyu, Li Shengrong, et al. Characteristics of Uranium Minerals in Wall-Rock Alteration Zones of the Mianhuakeng (No.302) Uranium Deposit, Northern Guangdong, South China[J]. Acta Petrological Sinica, 2018, 34(9):2657-2670. [64] Zhong F J, Pan J Y, Qi J M, et al. New In-Situ LA-ICP-MS U-Pb Ages of Uraninite from the Mianhuakeng Uranium Deposit, Northern Guangdong Province, China:Constraint on the Metallogenic Mechanism[J]. Acta Geological Sinica, 2018, 92(2):852-854. [65] Zhang C, Cai Y Q, Dong Q, et al. Genesis of the South Zhuguang Uranium Ore Field, South China:Pb Isotopic Compositions and Mineralization Ages[J]. Resource Geology, 2019, 69(1):22-42. [66] 钟福军,严杰,夏菲,等. 粤北长江花岗岩型铀矿田沥青铀矿原位U-Pb年代学研究及其地质意义[J]. 岩石学报, 2019, 35(9):2727-2744. Zhong Fujun, Yan Jie, Xia Fei, et al. In-Situ Isotope Geochronology of Uraninite for Changjiang Granite-Type Uranium Ore Field in Northern Guangdong, China:Implications for Uranium Mineralization[J]. Acta Petrological Sinica, 2019, 35(9):2727-2744. [67] 杜乐天. 花岗岩型铀矿文集[M]. 北京:原子能出版社, 1982. Du Letian. Granite Type Uranium Deposit Corpus[M]. Beijing:Atomic Energy Publishing House, 1982. [68] 胡瑞忠,李朝阳,倪师军,等. 华南花岗岩型铀矿床成矿热液中ΣCO2来源研究[J]. 中国科学:B辑, 1993, 23(2):189-196. Hu Ruizhong,Li Chaoyang, Ni Shijun, et al. Study on the Source of ΣCO2 in Ore-Forming Hydrothermal Fluid for Granite-Type Uranium Deposits in South China[J]. Science in China:Series B, 1993, 23(2):189-196. [69] 聂斌,张万良. 赣南黄沙矿区辉绿岩Ar-Ar年龄及其与铀成矿关系[J]. 矿产与地质, 2018, 32(3):390-396. Nie Bin, Zhang Wanliang.Ar-Ar Age of the Diabase and Its Relationship with Uranium Mineralization in Huangsha Mining District, Southern Jiangxi Province[J]. Mineral Resources and Geology, 2018, 32(3):390-396. [70] 冯志军,赖中信,莫济海,等. 下庄矿田"交点"型铀矿床成矿机理研究及勘查思路探讨[J]. 矿床地质, 2016, 35(5):1047-1061. Feng Zhijun, Lai Zhongxin, Mo Jihai, et al. A Study of Metallogenic Mechanism of "Intersection" Type Uranium Deposit and Exploration Thinking of Xiazhuang Orefield[J]. Mineral Deposits, 2016, 35(5):1047-1061. |
[1] | Du Zezhong, Cheng Zhizhong, Yao Xiaofeng, Yu Xiaofei, Sun Hairui, Bao Xinglong, Li Shaohua. 40Ar-39Ar Age of Altered Potash Feldspar of Xiejiagou Gold Deposit in Jiaodong and Its Geological Significance [J]. Journal of Jilin University(Earth Science Edition), 2020, 50(5): 1570-1581. |
[2] | Cheng Long, Ding Qingfeng, Deng Yuanliang, Song Kai, Zhang Qiang. Petrogenesis of Middle Triassic Diabase Veins in Wulonggou Ore Concentrated Areas Within East Kunlun Orogen: Chronology, Geochemistry and Tectonic Significance [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(6): 1628-1648. |
[3] | Wu Di, Zhuang Tingxin, Tian Li, Liu Xiaodong, Li Weimin. Geological Features and Ore Genesis of Huanggou Uranium Deposit in Eastern Liaoning Uranium Metallogenic Belt [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(2): 452-463. |
[4] | Dong Fuxiang, Cao Jiaxin, Yu Hongyu, Yan Panpan. Characteristics and Cause of Diabase Dikes in Liujiang Area of Qinhuangdao [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(3): 820-831. |
[5] | Li Shuangwen,Wu Yongping,Liu Huaqing,Zhou Lihong,Xiao Dunqing,Yao Jun,Ni Changkuan. Characteristics and Distribution of Oil Reservoirs Related to Cenozoic Igneous Rocks in Qikou Depression [J]. Journal of Jilin University(Earth Science Edition), 2014, 44(4): 1071-1084. |
[6] | Pei Fuping, Ye Yifan, Wang Feng, Cao Huahua, Lu Siming, Yang Debin. Discovery of Mesoproterozoic Diabase Dyke in Tonghua Region, Jilin Province and Its Tectonic Implications [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(1): 110-118. |
[7] | ZHENG Chang-qing,XU Zheng-shun,WANG Pu-jun,SUN Xiao-meng,WANG Hu. Geological Characteristics and Hydrocarbon Reservoir Significance of the Diabaseprophyrite at the Shanghewan Area, Southeast Uplift of the Songliao Basin, NE China [J]. J4, 2007, 37(6): 1097-1103. |
|