Journal of Jilin University(Earth Science Edition)

Previous Articles     Next Articles

The Effect of Indigenous Microorganisms on Water-Rock Interaction During the Geological Storage of CO2

Zhang Fengjun,Zhao Jing, Wang Tianye,Tao Yi,Liu Zhuojing,Xu Tianfu   

  1. Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun130021, China
  • Received:2012-05-26 Online:2013-03-26 Published:2013-03-26

Abstract:

The authors studied the influence of indigenous microorganisms on dissolution and precipitation of the minerals under conditions of high-pressure CO2 presence in deep saline geological formations. A series of experiments in shake flasks at ambient pressure and autoclaves were performed, in order to simulate the underground temperature, pressure and water environment. The results showed that calcium carbonate deposited on the surface of the minerals with the growth of bacteria. However, the dissolution rate of some carbon sequestration ions increased with the growth of fungi. Deposition amounts of iron carbonates on the surface of the minerals were enhanced by the growth of actinomycetes. Both the bacteria experiments and the autoclave experiments showed a kind of un-identified mineral precipitated on the surface of the rock samples, which potentially promoted the fixing of CO2 in underground. If the reaction time was long enough, the bicarbonate could turn into some carbonate minerals, such as CaCO3, MgCO3, and FeCO3. Thus, it is possible to store CO2 underground permanently.

Key words: microorganisms, carbon dioxide, carbonates, geological storage

CLC Number: 

  • P66
[1] Niu Jun, Huang Wenhui, Ding Wenlong, Jiang Wenlong, Zhang Yamei, Qi Lixin, Yun Lu, Lü Haitao. Carbon and Oxygen Isotope Characteristics and Its Significance of Ordovician Carbonates in Yubei Area of Maigaiti Slope [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(1): 61-73.
[2] Diao Yujie, Zhang Senqi, Li Fucheng, Gao Shiwang, Wang Xiaolong, Jia Xiaofeng. Site Selection for Offshore CO2 Geological Storage and Its Suitability Evaluation: A Case Study of Yuhuan Power Plant [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(3): 844-854.
[3] Cao Wenjiong, Chen Jiliang, Jiang Fangming. Effects of Variable Properties of Heat Transmission Fluid on EGS Heat Extraction: A Numerical Study [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(4): 1180-1188.
[4] Li Zhenhong, Dong Shuwen, Qu Hongjie. Sedimentary Evidences of Jurassic Orogenic Process and Key Time Limit on the Northern Margin of North China Craton [J]. Journal of Jilin University(Earth Science Edition), 2014, 44(5): 1553-1574.
[5] Yang Yanlin,Xu Tianfu,Li Jiaqi,Wang Fugang. Complex Geological Body Modeling and Implementation of CO2 Geological Storage Simulation Using TOUGH [J]. Journal of Jilin University(Earth Science Edition), 2014, 44(4): 1307-1313.
[6] Jia Xiaofeng, Zhang Yang, Zhang Hui, Diao Yujie, Li Xufeng, Fan Jijiao, Zhangchao, Zheng Changyuan. Method of Target Area Selection of CO2 Geological Storage in China [J]. Journal of Jilin University(Earth Science Edition), 2014, 44(4): 1314-1326.
[7] Qie Ying,Fu Xiaofei,Meng Lingdong,Xu Peng. Fault Zone Structure and Hydrocarbon Accumulation in Carbonates [J]. Journal of Jilin University(Earth Science Edition), 2014, 44(3): 749-761.
[8] Du Shanghai,Su Xiaosi, Zheng Liange. Self-Repair Capacity Assessment of Shallow Aquifer Under Natural Condition After the Carbon Dioxide Leakage Stopped [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(6): 1980-1986.
[9] Yang Youxing, Jin Zhenkui, Bai Wuhou,Qiao Dongsheng,Diao Liying,Meng Fanyang, Yuan Minghui, Zhang Chun. Depositional Model and Evolution Characteristics of Thin-Layer Lacustrine Carbonates in Qibei Slope, Huanghua Depression [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(5): 1330-1340.
[10] Zhou Bo,Qiu Haijun,Duan Shufu,Li Qiming,Wu Guanghui. Origin of Micro-Pores in the Upper Ordovician Carbonate Reservoir of the Central Tarim Basin,NW China [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(2): 351-359.
[11] Wang Xiaomin,Chen Zhaonian,Fan Tailiang,Yu Tengxiao,Cao Zicheng,He Hai. Integrated Reservoir Characterization of Late Carboniferous Carbonate Inner Platform Shoals in Bamai Region, Tarim Basin [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(2): 371-381.
[12] LI Xiao-hui, ZHOU Yan-qiu, GOU Yan-hong, WANG Yu-hua, JIANG Bao-yan. Porosity Analysis of Micro-Electric Imaging Logging and Its Application in Carbonate Reservoir Production Capacity Forecast [J]. J4, 2012, 42(4): 928-934.
[13] GAO Zhi-qian, FAN Tai-liang, YANG Wei-hong, WANG Xin. Structure Characteristics and Evolution of the Eopaleozoic Carbonate Platform in Tarim Basin [J]. J4, 2012, 42(3): 657-665.
[14] GUO Jian-qiang, ZHANG Sen-qi, DIAO Yu-jie, LI Xu-feng, ZHANG Hui, FAN Ji-jiao. Site Selection Method of CO2 Geological Storage in Deep Saline Aquifers [J]. J4, 2011, 41(4): 1084-1091.
[15] ZHANG Yun-feng, WANG Guo-qiang, FU Bao-li, LI Jing, WANG Chun-xiang. The Diagenesis and the Origin of Abnormal High Porosity Zone in the Deep Clastic Reservoir in Changling Fault Depression [J]. J4, 2011, 41(2): 372-376.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!