吉林大学学报(工学版) ›› 2012, Vol. 42 ›› Issue (02): 392-396.

Previous Articles     Next Articles

Mechanical fault diagnosis based on empirical mode decomposition and generalized dimension

HAO Yan1, WANG Tai-yong1,2, WAN Jian2, ZHANG Pan2, LIU Lu1   

  1. 1. College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China;
    2. School of Mechanical Engineering, Tianjin University, Tianjin 300072, China
  • Received:2010-11-12 Online:2012-03-01 Published:2012-03-01

Abstract: A method of mechanical fault diagnosis based on empirical mode decomposition (EMD) and generalized dimension was presented. The intrinsic mode function (IMF) was obtained from the EMD of the signal, and the generalized dimension was derived from every IMF. The box dimension, the information dimension, and the correlation dimension were extracted from the generalized dimension to make up the generalized dimension matrix. Fault diagnosis was implemented by analyzing the correlation factors of generalized dimension matrix between target signal and samples. The experiment results showed that this method with accurate fault recognition was efficient for fault diagnosis.

Key words: mechanical fault, fault diagnosis, empirical mode decomposition, generalized dimension, intrinsic mode function

CLC Number: 

  • TN911.72
[1] Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proc R Soc Lond A, 1998, 454: 903-995.

[2] 赵艳菊,王太勇,任成祖,等.强噪声背景下的经验模式分解研究[J].振动与冲击, 2009, 28(3): 149-157. Zhao Yan-ju, Wang Tai-yong, Ren Cheng-zu, et al. Research on empirical mode decomposition of signals submerged in a heavy noise[J]. Journal of Vibration and Shock, 2009, 28(3):149-157.

[3] 赵艳菊,王太勇,冷永刚,等.级联双稳随机共振降噪下的经验模式分解[J].天津大学学报,2009,42(2):123-128. Zhao Yan-ju, Wang Tai-yong, Leng Yong-gang, et al. Empirical mode decomposition based on cascaded bistable stochastic resonance denoising[J]. Journal of Tianjin University, 2009, 42(2):123-128.

[4] Mandelbrot B B. The Fractal Geometry of Nature[M]. San Francisco: Freeman, 1982.

[5] Falconer K J. Fractal Geometry: Mathematical Foundation and Applications[M]. Chichester: John Wiley & Sons Ltd, 1990.

[6] 赵莹,高隽,陈果,等.一种基于分形理论的多尺度多方向纹理特征提取方法[J].仪器仪表学报,2008,29(4):787-791. Zhao Ying, Gao Jun, Chen Guo, et al. Multi-scale and multi-orientation texture feature extraction method based on fractal theory [J]. Chinese Journal of Scientific Instrument, 2008, 29(4):787-791.

[7] 王荣本,顾柏园,郭烈,等.基于分形盒子维数的车辆定位和识别方法[J].吉林大学学报:工学版,2006,36(3):331-335. Wang Rong-ben, Gu Bai-yuan, Guo Lie, et al. Vehicle location and identification method based on fractal box dimensionality[J]. Journal of Jilin University (Engineering and Technology Edition), 2006, 36(3):331-335.

[8] 徐玉秀,钟建军,闻邦椿.旋转机械动态特性的分形特征及故障诊断[J].机械工程学报, 2005, 41(12): 186-189. Xu Yu-xiu, Zhong Jian-jun, Wen Bang-chun. Fractal fault diagnosis and classification to modal characteristic of rotor system[J]. Chinese Journal of Mechanical Engineering, 2005, 41(12):186-189.

[9] 苑宇,马孝江.局域波时频域多重分形在故障诊断中的应用[J].振动与冲击, 2007, 26(5):60-63. Yuan Yu, Ma Xiao-jiang. Fault diagnosis using multifracals in local wave time-frequency domain[J]. Journal of Vibration and Shock, 2007, 26(5):60-63.

[10] 李国宾,段树林,于洪亮,等.发动机振动信号特征参数的多重分形研究[J].内燃机学报,2008,26(1):87-91. Li Guo-bin, Duan Shu-lin, Yu Hong-liang, et al. Study on characteristic parameters of engine vibration signal based on multi-fractal[J]. Transaction of CSICE, 2008, 26(1):87-91.

[11] 樊福梅,梁平,吴庚申.基于分形盒维数的汽轮机转子振动故障诊断的实验研究[J].核动力工程,2006,27(1):85-89. Fan Fu-mei, Liang Ping, Wu Geng-shen. Experimental research on stream-turbine rotor vibration fault diagnosis based on the fractal box counting dimension[J]. Nuclear Power Engineering, 2006, 27(1):85-89.

[12] Huang N E, Shen Z, Long S R. A new view of nonlinear water waves: the Hilbert spectrum[J]. Annu Rev Fluid Mech, 1999, 31: 417-457.
[1] WANG De-jun, WEI Wei-li, BAO Ya-xin. Actuator fault diagnosis of ESC system considering crosswind interference [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1548-1555.
[2] LIU Wei-na, ZHOU Xiao-long, JIANG Zhen-hai, MA Feng-lei. Improved empirical mode decomposition method based on optimal feature [J]. 吉林大学学报(工学版), 2017, 47(6): 1957-1963.
[3] SONG Da-feng, LI Guang-han, ZHANG Lin, PAN Bing, ZENG Xiao-hua, PENG Yu-jun, WANG Qing-nian. Application of fuzzy mathematics in fault diagnosis of motor of hybrid vehicle [J]. 吉林大学学报(工学版), 2016, 46(2): 354-359.
[4] JIANG Wan-lu,LU Chuan-qi,ZHU Yong. HHT and fuzzy C-means clustering-based fault recognition for axial piston pump [J]. 吉林大学学报(工学版), 2015, 45(2): 429-436.
[5] SONG Bao-yu,XIE Zhi-jie,ZHANG Feng,WANG Rui-ze,HAO Ming-hui,SU Dai-zhong. Fault diagnosis algorithm for helical gear rotating at low speed on angular domain synchronous average and order tracking analysis [J]. 吉林大学学报(工学版), 2015, 45(2): 454-459.
[6] OUYANG Dan-tong,CHI Jin-jin,WANG Xiao-yu,ZHAO Xiang-fu ,MENG Xiang-yu. Approach of diagnosis of higher-order discrete event systems [J]. 吉林大学学报(工学版), 2015, 45(2): 562-568.
[7] LI Shi-wu, YAO Xue-ping, SUN Wen-cai, WANG Lin-hong, LAI Xiang-xiang, WANG De-qiang. Monitoring technology for vehicle loading status reflecting suspension vibration characteristics [J]. 吉林大学学报(工学版), 2014, 44(2): 335-342.
[8] WU Jian, ZHAO Yang, HE Rui. Fault detection and diagnosis of EMB sensor system based on SVR [J]. 吉林大学学报(工学版), 2013, 43(05): 1178-1183.
[9] LEI Da, ZHONG Shi-sheng. Aircraft engine health signal denoising based on singular value decomposition and empirical mode decomposition methods [J]. 吉林大学学报(工学版), 2013, 43(03): 764-770.
[10] LI Huan-li, GUO Li-hong, CHEN Tao, YANG Li-mei, WANG Xin-zui, DONG Yue-fang. Iris recognition based on improved empirical mode decomposition method [J]. 吉林大学学报(工学版), 2013, 43(01): 198-205.
[11] LIN Yu-rong,WANG Qiang. Extracting details from images based on 1-DEMD [J]. 吉林大学学报(工学版), 2011, 41(6): 1766-1770.
[12] CHEN Yun-han, QIN Gui-he, YU He, HUANG Yue. In-vehicle network management system complied with OSEK/VDX direct NM [J]. 吉林大学学报(工学版), 2011, 41(05): 1407-1413.
[13] LIU Bai-sen,LU Zhi-mao,SHEN Li-ran,JIN Hui.  Voice activity detection with low signal-to-noise ratio based on Hilbert-Huang transform [J]. 吉林大学学报(工学版), 2011, 41(03): 844-848.
[14] KONG Fan-sen,WU Ya-fu,LI Cong. Assessment of fault diagnosis complexity about electrical fault diagnosis of equipment based on information entropy [J]. 吉林大学学报(工学版), 2011, 41(03): 697-701.
[15] SHAO Ji-ye,WANG Ri-xin,XU Min-qiang. Application of Bayesian network in model-based fault diagnosis [J]. 吉林大学学报(工学版), 2010, 40(01): 234-0237.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!