J4

• 计算机科学 • 上一篇    下一篇

粒子群算法的改进及其在求解约束优化问题中的应用

刘华蓥1, 林玉娥1, 王淑云2   

  1. 1. 大庆石油学院计算机与信息技术学院, 黑龙江省 大庆 163318; 2. 吉林大学数学学院, 长春 130012
  • 收稿日期:2004-11-20 修回日期:1900-01-01 出版日期:2005-07-26
  • 通讯作者: 刘华蓥

A Modified Particle Swarm Optimization for Solving Constrained Optimization Problems

LIU Hua-ying1, LIN Yu-e1, WANG Shu-yun2   

  1. 1. College of Computer and Information Technology, Daqing Petroleum1 Institute, Daqing 163318, Heilongjiang Province, China; 2. College of Mathematics, Jilin University, Changchun 130012, China
  • Received:2004-11-20 Revised:1900-01-01 Online:2005-07-26
  • Contact: LIU Hua-ying

摘要: 在用粒子群算法求解约束优化问题时, 处理好约束条件 是取得好的优化效果的关键. 通过对约束问题特征和粒子群算法结构的研究, 提出求解约束 优化问题一种改进的粒子群算法, 该算法让每个粒子都具有双适应值, 通过双适应值决定粒 子优劣, 并提出了自适应保留不可行粒子的策略. 实验证明, 改进的算法是可行的, 且在 精度与稳定性上明显优于采用罚函数的粒子群算法和遗传算法等算法.

关键词: 粒子群优化算法, 双适应值, 自适应

Abstract: In trying to solve constrained optimization problems by particle swarm optimization, the way to handle the constrained conditions is th e key factor for success. Some features of particle swarm optimization and a lar ge number of constrained optimization problems are taken into account and then a new method is proposed, which means to separate the objective functions from it s constrained functions. Therefore, every particle of particle swarm optimiz ation has double fitness values whether the particle is better or not will be de cided by its two fitness values. The strategy to keep a fixed proportion of infe asible individuals is used in this new method. Numerical results show that t he improved PSO is feasible and can get more precise results than particle swarm optimization by using penalty functions and genetic algorithm and other optimiz ation algorithms.

Key words: particle swarm optimization, double fitness value, adaptive

中图分类号: 

  • TP301