吉林大学学报(理学版)

• 数学 • 上一篇    下一篇

K(θ)上可解多项式代数中左Grobner基的计算

罗映芳, 张蕊青   

  1. 海南大学 信息科学技术学院应用数学系, 海口 570228
  • 收稿日期:2013-04-25 出版日期:2014-03-26 发布日期:2014-03-20
  • 通讯作者: 罗映芳 E-mail:lyf187196@163.com

Computation of Left Grbner Basis inSolvable Polynomial Algebras on K(θ)

LUO Yingfang, ZHANG Ruiqing   

  1. Department of Applied Mathmatics, College of Information Science and Technology, Hainan University, Haikou 570228, China
  • Received:2013-04-25 Online:2014-03-26 Published:2014-03-20
  • Contact: LUO Yingfang E-mail:lyf187196@163.com

摘要:

给定域K的单代数扩域K(θ)上可解多项式代数A=K(θ)[a1,…,an], 设A的子代数A0=K[a1,…,an]是K上可解多项式代数. 通过考察A与多项式代数A0[x]之间的结构关系, 给出将A中左Grobner基的计算转换为A0[x]中左Grobner基计算的有效方法.

关键词: 可解多项式代数, 左理想, 左Grobner基

Abstract:

Let A=K(θ)[a1,…,an] be a solvable polynomial algebra on a simple algebraic extension K(θ) of the field K, and the
subalgebra A0=K[a1,…,an] of A be a solvable polynomial algebra on K. The structural relation between A and the polynomial algebra A0[x] shows the computation of left Grbner bases in A is effectively converted to the computation of left Grbner bases in A0[x].

Key words: solvable polynomial algebra, left ideal, left Grobner basis

中图分类号: 

  • O153.3