吉林大学学报(理学版)

• 数学 • 上一篇    下一篇

大气尘埃扩散方程行波解

冯依虎1, 林万涛2, 莫嘉琪3   

  1. 1. 亳州学院 电子与信息工程系, 安徽 亳州 236800;2. 中国科学院 大气物理研究所, 大气科学和地球流体力学数值模拟国家重点实验室, 北京 100029;3. 安徽师范大学 数学系, 安徽 芜湖 241003
  • 收稿日期:2016-01-25 出版日期:2016-11-26 发布日期:2016-11-29
  • 通讯作者: 莫嘉琪 E-mail:mojiaqi@mail.ahnu.edu.cn

Travelling Wave Solution for Dust DiffusionEquation in Atmosphere

FENG Yihu1, LIN Wantao2, MO Jiaqi3   

  1. 1. Department of Electronics and Information Engineering, Bozhou College, Bozhou 236800, Anhui Province,China; 2. State Key Laboratory of Numerical Modeling for Atmospheric and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; 3. Department of Mathematics, Anhui Normal University, Wuhu 241003, Anhui Province, China
  • Received:2016-01-25 Online:2016-11-26 Published:2016-11-29
  • Contact: MO Jiaqi E-mail:mojiaqi@mail.ahnu.edu.cn

摘要: 考虑一类大气尘埃等离子体扩散方程. 首先对方程进行行波变换, 变为行波方程; 其次引入一个泛函, 并令该变分为零, 决定Lagrange算子; 然后构造一个广义变分迭代式和决定零次近似的孤立子函数解, 再由迭代式依次求出各次近似孤立子解; 最后利用行波变换得到原方程孤立子的各次近似行波解.

关键词: 扩散方程, 等离子体, 大气尘埃, 行波解, 孤立子解

Abstract: A class of diffusion equation for dust plasma in atmosphere was considered. Firstly, we took a travelling wave transformation for equation, and turned into a travelling wave equation. Secondly, we introduced a functional,  set variation was zero, and determined the Lagrange operator. Then we constructed a generalized variational iteration and determined the zeroth order approximate soliton solution, and derived the any order approximate soliton solutions by iterative. Finally, we used the travelling wave transformation to obtain the any order approximate travelling wave solutions of the soliton for the original equation.

Key words: diffusion equation, plasma, atmospheric dust, travelling wave solution, soliton solution

中图分类号: 

  • O175.29