J4

• 数学 • 上一篇    下一篇

基于后验概率的Markov逻辑网参数学习方法

孙舒杨, 刘大有, 孙成敏   

  1. 吉林大学 计算机科学与技术学院, 长春 130012; 吉林大学 符号计算与知识工程教育部重点实验室, 长春 130012
  • 收稿日期:2005-12-21 修回日期:1900-01-01 出版日期:2006-11-26 发布日期:2006-08-26
  • 通讯作者: 刘大有

Pseudoposterior Parameters Learning of Markov Logic Networks

SUN Shuyang, LIU Dayou, SUN Chengmin   

  1. College of Computer Science and Technology, Jilin University, Changchun 130012, China; Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China
  • Received:2005-12-21 Revised:1900-01-01 Online:2006-11-26 Published:2006-08-26
  • Contact: LIU Dayou

摘要: 通过介绍统计关系学习方法Markov逻辑网的理论模型和参数学习方法, 提出一种基于后验概率的参数估计方法, 该方法采用正态先验分布, 用伪似然概率替代似然概率, 通过最大化伪后验概率来学习模型参数. 实验结果表明, 该方法能够有效地学出模型参数, 且所得模型推理能力优于现有的参数学习方法.

关键词: 统计关系学习, 一阶逻辑, Markov网, 机器学习, Markov

Abstract: The theory and parameters learning of MLNs are introduced, and a parameter learning method based on posterior is proposed. With normal distribution as the prior and pseudo likelihood instead of likelihood, the pseudoposterior is maximized to learn parameters. Experimental results show MLNs pa rameters can be effectively learned, and the inference with the learned model is better that those with current parameter learning methods.

Key words: statistical relational learning, firstorder logic, Markov network, machine learning, Markov logic network

中图分类号: 

  • TP18