J4

• • 上一篇    下一篇

球面稳定同伦群的一族新元素G0(B1)4Γs

金应龙1, 王健波2   

  1. 1. 南开大学 数学学院, 天津 300071; 2. 内蒙古大学 数学系, 呼和浩特 010021
  • 收稿日期:2005-01-10 修回日期:1900-01-01 出版日期:2006-01-26 发布日期:2006-01-26
  • 通讯作者: 金应龙

A New Family Elements in the Stable Homotopy Group G0(B1)4Γs

JIN Ying-long1, WANG Jian-bo2   

  1. 1. College of Mathematics, Nankai University, Tianjin 300071, China; 2. Department of Mathematics, Inner Mongolia University, Huhehaote 010021, China
  • Received:2005-01-10 Revised:1900-01-01 Online:2006-01-26 Published:2006-01-26
  • Contact: JIN Ying-long

摘要: 利用May谱序列的E1s,t,*项收敛于群EAs,t(Zp,Zp)以及Adams谱序列的E2s,t项收敛于球面稳定群πt-s(S)p的方法, 并结合谱的上纤维序列导出Ext群的正合序列, 发现了谱V(2)稳定同伦群中的一个非零元素g0(b1)4, 并且发现它在Adams谱序列中是一个永久循环. 运用Yoneda乘积, 得到了球面稳定同伦群中的一个非零元素g0(b1)4γs.

关键词: Adams谱序列, May谱序列, 球面稳定同伦群, 球谱

Abstract: According to the fact that E1s,t,* of May spectral sequence is converged to EAs,t(Zp,Zp) and EE2s,t of Adams spectral sequence is converged to stable homotopy groups of sphere πt-s(S)p combined with the exact sequence of Ext group induced from the confibration of spectrum. A nonzero element g0(b1)4 of stable homotopy groups of V(2) is found, and it is a permanent cycle in Adams spectral sequence. With the help of Yonedaproducts, a nonzero element g0(b1)4γs of stable homotopy groups of sphere is obtained.

Key words: Adams spectral sequence, May spectral sequence, stable homotopy group of sphere, sphere spectrum

中图分类号: 

  • O189.2