吉林大学学报(理学版)

• 计算机 • 上一篇    下一篇

基于直觉模糊最小二乘支持向量机的变压器故障诊断

李岩波1, 张超2, 郭新辰2   

  1. 1. 吉林大学 数学学院, 长春 130012; 2. 东北电力大学 理学院, 吉林 吉林 132012
  • 收稿日期:2013-11-11 出版日期:2014-03-26 发布日期:2014-03-20
  • 通讯作者: 李岩波 E-mail:Liyb@jlu.edu.cn

Transformer Fault Diagnosis Based on IntuitionisticFuzzy Least Squares Support Vector Machine

LI Yanbo1, ZHANG Chao2, GUO Xinchen2   

  1. 1. College of Mathematics, Jilin University, Changchun 130012, China;2. College of Science, Northeast Dianli University, Jilin 132012, Jilin Province, China
  • Received:2013-11-11 Online:2014-03-26 Published:2014-03-20
  • Contact: LI Yanbo E-mail:Liyb@jlu.edu.cn

摘要:

针对基于溶解气体分析的变压器故障诊断数据具有小样本、 贫信息且故障诊断结果易受样本中噪声影响的特点, 提出一种直觉模糊最小二乘支持向量机算法(IFLS-SVM). 先进行相关算法的推导, 并设计了基于IFLSSVM的多类分类器, 然后借助Matlab软件实现了电力变压器的相关故障实例诊断, 最后将其诊断结果与LS-SVM
的几种多分类算法及BP神经网络的诊断结果进行比较. 实验结果表明, IFLS-SVM诊断效果较好, 抗噪性较强.

关键词: 电力变压器, 故障诊断, 直觉模糊, 最小二乘支持向量机

Abstract:

In the light of transformer fault diagnosis based on dissolved gas analysis (DGA) with a small sample size, poor information and the fault diagnosis results is easily affected by the noise in the sample, we proposed an intuitionistic fuzzy least squares support vector machine algorithm (IFLS-SVM). First we derived the related algorithm, and designed the multiclass classifier based on the IFLSSVM. Then we implemented the power transformers’ fault
diagnosis using the Matlab software. At last we compared the diagnostic result of the algorithm we proposed with the diagnostic results of the several LS-SVM multiclassification algorithms and BP neural network diagnostic result. Experiments results show that the IFLSSVM diagnosis is better, with stronger noise immunity.

Key words:  power transformers, fault diagnosis, intuitionistic fuzzy, least squares support vector machine (LS-SVM)

中图分类号: 

  • TP181