吉林大学学报(理学版)

• 计算机科学 • 上一篇    下一篇

基于稳定阈值的吸引子传播算法

王丽敏1, 王依章1, 韩旭明2, 黄娜3   

  1. 1. 吉林财经大学 管理科学与信息工程学院, 长春 130117;2. 长春工业大学 计算机科学与工程学院, 长春 130012;3. 上海财经大学 信息管理与工程学院, 上海 200433
  • 收稿日期:2014-05-13 出版日期:2014-11-26 发布日期:2014-12-11
  • 通讯作者: 韩旭明 E-mail:hanxvming@163.com

Stability ThresholdBased Affinity Propagation Algorithm

WANG Limin1, WANG Yizhang1, HAN Xuming2, HUANG Na3   

  1. 1. School of Management Science and Information Engineering, Jilin University of Finance and Economics,Changchun 130117, China; 2. School of
    Computer Science and Engineering, Changchun University of Technology, Changchun 130012, China; 3. School of Information Management and Engineering,Shanghai University of Finance and Economics, Shanghai 200433, China
  • Received:2014-05-13 Online:2014-11-26 Published:2014-12-11
  • Contact: HAN Xuming E-mail:hanxvming@163.com

摘要:

针对传统吸引子传播算法(AP)聚类性能受偏向参数影响较大的问题, 提出一种改进的吸引子传播算法, 即基于稳定阈值的吸引子传播聚类算法(STAP). 该算法通过稳定阈值, 衡量获得真实类数时的收敛状态, 然后捕捉该状态下的偏向参数; 为加快算法的收敛速度, 采用S型函数作为收敛因子调节阻尼系数. 仿真模拟实验结果表明, 与传统吸引子传播聚类算法相比, 基于稳定阈值的吸引子传播聚类算法聚类精度更高, 收敛速度更快.

关键词: 收敛因子, 吸引子传播算法, 稳定阈值

Abstract:

In view of the performance of traditional affinity propagation algorithm greatly influenced by parameter P, a novel affinity propagation algorithm based on stability threshold was proposed. The improved algorithm can obtain the convergence of the real class number by stabilizing threshold, and then gain the corresponding parameter P. In order to improve the convergence speed, S function as convergence factor was applied to adjust damp parameter. In addition, it was successfully applied to the field of financial evaluation of listed companies. Simulation experimental results show that the improved clustering algorithm could obtain better precision and quicker convergence, and is obviously better than traditional affinity propagation clustering algorithm.

Key words: affinity propagation algorithm, stability threshold, convergence factor

中图分类号: 

  • TP301