吉林大学学报(理学版)

• 数学 • 上一篇    下一篇

Fq+vFq+v2Fq上的斜常循环码

宋贤梅, 曹杨   

  1. 安徽师范大学 数学计算机科学学院, 安徽 芜湖 241003
  • 收稿日期:2016-04-21 出版日期:2017-03-26 发布日期:2017-03-24
  • 通讯作者: 曹杨 E-mail:cao91yang@163.com

Skew Constacyclic Codes over Fq+vFq+v2Fq

SONG Xianmei, CAO Yang   

  1. College of Mathematics and Computer Science, Anhui Normal University, Wuhu 241003, Anhui Province, China
  • Received:2016-04-21 Online:2017-03-26 Published:2017-03-24
  • Contact: CAO Yang E-mail:cao91yang@163.com

摘要: 考虑一类环R=Fq+vFq+v2Fq(其中: q=pm, p是素数; v3=v)上的斜常循环码. 根据环的结构得到了R上斜常循环码的生成多项式是xn-λ的右因子(λ是一个单位), 且斜常循环码是由主理想生成的;  当λ2=1时, 给出线性码的对偶码是斜常循环码的充要条件, 并讨论对偶码的生成多项式形式.

关键词: 斜常循环码, 对偶码, Euclid内积

Abstract: We considered skew constacyclic codes over the ring R=Fq+vFq+v2Fq, where q=pm, p was an odd prime and v3=v. According to the structure of the ring, we obtained the generating polynomial of skew constacyclic codes over R was the right divisor of xn-λ, where λ was a unit element and proved that skew constacyclic codes were generated by the principal ideal, when λ2=1, we gave the necessary and sufficient condition for the dual code of a liner code to be skew constacyclic code, and discussed generating polynomials of the dual codes.

Key words: Euclidean inner product, skew constacyclic code, dual code

中图分类号: 

  • O157.4