J4

• 数学 • 上一篇    下一篇

扩散占优的2×2双曲平衡律奇异松弛极限及其应用

宋国强1,2, 杨瑞芳1, 赵 磊1, 李丽娜1   

  1. 1. 南京航空航天大学 理学院, 南京 210016; 2. 安徽医科大学 卫生管理学院, 合肥 230032
  • 收稿日期:2008-08-22 修回日期:1900-01-01 出版日期:2009-05-26 发布日期:2009-06-23
  • 通讯作者: 宋国强

Singular Limits of Stiff Relaxation and Dominant Diffusion forHyperbolic Balance Laws and Its Applications

SONG Guoqiang1,2, YANG Ruifang1, ZHAO Lei1, LI Lina1   

  1. 1. College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;2. College of Health Administration, Anhui Medical University, Hefei 230032, China
  • Received:2008-08-22 Revised:1900-01-01 Online:2009-05-26 Published:2009-06-23
  • Contact: SONG Guoqiang

摘要: 研究一般扩散占优的2×2双曲平衡律系统奇异松弛极限, 用补偿紧性方法, 在松弛时间τ比扩散系数ε趋于零快时, 即τ=o(ε), ε→ 0时, 得到其解的整体存在性一般框架: 如果上述系统的解存在对ε一致的先验L估计, 则其解序列收敛于上述系统的对应平衡状态解. 并将这一框架应用于一些具有非齐次项和松弛项的重要非线性系统, 如有非齐次项和松弛项的二次流、 LeRoux系统、 非线性弹性系统和交 通扩展流等.

关键词: 双曲平衡律, 奇异松弛极限, 非齐次项, 弱解, 补偿紧性方法

Abstract: The authors investigated the singular limits of stiff relaxation and dominant diffusion for general 2×2nonlinear systems of balance laws, that is, τ=o(ε), ε→ 0, the relaxation time τtends to zero faster than the diffusion parameter ε. If there exists a priori L bound that is uniformly with respect to ε for the solutionsof a system, then the solution sequence converges to the corresponding equilibrium solution of the system. This framework can be applied to some important nonlinear systems with relaxation terms and inhomogeneous terms, such as the system of quadratic flux, the LeRoux system, the system of elasticity and the extended models of traffic flows.

Key words: hyperbolic balance system, singular limits of stiff relaxation, inhomogeneous terms, weak solution, compensated compactness method

中图分类号: 

  • O175.27