J4

• 数学 • 上一篇    下一篇

对称锥互补问题的一类价值函数及其性质

刘丽霞1, 刘三阳1, 侯兆阳2   

  1. 1. 西安电子科技大学 应用数学系, 西安 710071; 2. 长安大学 理学院, 西安 710064
  • 收稿日期:2008-07-04 修回日期:1900-01-01 出版日期:2009-05-26 发布日期:2009-06-23
  • 通讯作者: 刘丽霞

A Class of Merit Function and Its Related Properties for Symmetric Cone Complementarity Problems

LIU Lixia1, LIU Sanyang1, HOU Zhaoyang2   

  1. 1. Department of Applied Mathematics, Xidian University, Xi’an 710071, China;2. College of Science, Chang’an University , Xi’an 710064, China
  • Received:2008-07-04 Revised:1900-01-01 Online:2009-05-26 Published:2009-06-23
  • Contact: LIU Lixia

摘要: 利用Euclidean-Jordan代数将非线性互补问题(NCP)的一类价值函数推广到对称锥互补问题(SCCP)上, 并证明了SCCP等价于一个无约束光滑极小化问题, 且给出了此类价值函数的两个例子. 此外, 研究了使得价值函数具有全局误差界的条件, 并给出了使得价值函数水平集有界的一个较弱条件.

关键词: 互补问题, 对称锥, 价值函数, Euclidean-Jordan代数

Abstract: A class of merit functions for describing the nonlinear complementarity problems (NCP) was extended to that for describing the symmetric cone complementarity (SCCP) problems by the tool of Euclidean-Jordan algebras. And then it was shown that the SCCP is equivalent to an unconstrained smooth minimizationvia this new merit function and two examples of the class of merit function are given. Moreover, the conditions under which the new merit function provides a global error bound were studied with a weak condition given under which the new merit function has bounded level sets.

Key words: complementarity problems, symmetric cone, merit function, EuclideanJordan algebra

中图分类号: 

  • O221