吉林大学学报(理学版)

• 计算机科学 • 上一篇    下一篇

基于多目标优化策略的结构损伤识别智能算法

刘仁云1, 于繁华2, 张晓丽1, 赵东2, 孙秋成1, 杨宏3   

  1. 1. 长春师范大学 数学学院, 长春 130032; 2. 长春师范大学 计算机科学与技术学院, 长春 130032;3. 吉林大学 汽车工程学院, 长春 130022
  • 收稿日期:2015-06-23 出版日期:2016-03-26 发布日期:2016-03-23
  • 通讯作者: 刘仁云 E-mail:yufanhua@163.com

An Intelligent Algorithm for Structural Damage IdentificationBased on Multiobjective Optimization Strategy

LIU Renyun1, YU Fanhua2, ZHANG Xiaoli1, ZHAO Dong2, SUN Qiucheng1, YANG Hong3   

  1. 1. School of Mathematics, Changchun Normal University, Changchun 130032, China;2. School of Computer Science & Technology, Changchun Normal University, Changchun 130032, China;3. College of Automotive Engineering, Jilin University, Chuangchun 130022, China
  • Received:2015-06-23 Online:2016-03-26 Published:2016-03-23
  • Contact: LIU Renyun E-mail:yufanhua@163.com

摘要:

针对结构损伤识别问题, 提出一种基于多目标优化策略的结构损伤识别智能算法. 该算法利用极端学习机为损伤参数指标与每一阶频率建立非线性函数表达式, 先将结构的每一阶实际测量频率与函数表达式相减, 再把形成的每个表达式作为优化目标, 进而得到结构损伤识别的高维多目标优化模型. 为提高模型的求解精度, 提出了灰色多粒子群协同的多目标优化算法. 实验结果表明, 该方法能较好地处理结构损伤识别问题.

关键词: 多目标优化, 极端学习机, 灰色多粒子群协同, 结构损伤识别

Abstract:

Aiming at the problem of structural damage identification, we proposed an intelligent algorithm for structural damage identification based on multiobjective optimization strategy. The algorithm used the extreme learning machine as the damage parameter index, and established the nonlinear function expression between damage parameters and every frequency. We first had the structure of the actual structural frequency  minus the function expression, and then took the formation of each expression as a optimization objective to obtain a highdimension multiobjective optimization model based on structural damage identification. In order to improve the solution accuracy of the model, we proposed a grey multi particle swarm coevolutionary algorithm for multi-objective optimization. The experimental results show that these methods can deal with the problem of structural damage identification.

Key words: multi-objective optimization, extreme learning machine, grey multi particle swarms co-evolutionary, structural damage identification

中图分类号: 

  • TP39