吉林大学学报(理学版)

• 计算机科学 • 上一篇    下一篇

基于向量矩阵优化频繁项的改进Apriori算法

曹莹, 苗志刚   

  1. 河北金融学院 信息管理与工程系, 河北 保定 071051
  • 收稿日期:2015-05-19 出版日期:2016-03-26 发布日期:2016-03-23
  • 通讯作者: 苗志刚 E-mail:l_mzg@126.com

Improved Apriori Algorithm Based on Vector Matrix Optimization Frequent Items

CAO Ying, MIAO Zhigang   

  1. Department of Information Management and Engineering, Hebei Finance University,Baoding 071051, Hebei Province, China
  • Received:2015-05-19 Online:2016-03-26 Published:2016-03-23
  • Contact: MIAO Zhigang E-mail:l_mzg@126.com

摘要:

针对经典Apriori算法存在多次扫描数据库及生成冗余候选项的弊端, 提出一种改进的VM_Apriori算法. 该算法采用事务数据向量矩阵与行候选向量相结合的表示方法, 运用快速排序的思想对频繁项集的项按各单项的出现频度升序重排,  以提高算法的执行效率. 实验结果表明, 改进的VM_Apriori算法能在正确挖掘关联规则的同时极大提高执行效率.

关键词: VM_Apriori算法, 关联规则, 项集优化, 向量矩阵,  , 数据挖掘

Abstract:

In view of the disadvantages of the classic Apriori algorithm with multiple scan the database and generation of redundant candidate, we proposed an improved VMApriori algorithm. The algorithm combined with transaction data vector matrix and row candidate vectors representation method. We used
 quick sort of frequent item sets by individual frequency ascending rearrangement to enhance the efficiency of the algorithm. The experimental results show that the improved VMApriori algorithm can mining association rules correctly, and greatly improve the efficiency of execution.

Key words: VMApriori algorithm, association rule, itemsets optimization, vector matrix, data mining

中图分类号: 

  • TP311.13