吉林大学学报(理学版)

• 数学 • 上一篇    下一篇

和与积相等的矩阵对及其多项式表示

陈梅香1, 吕洪斌2, 冯晓霞3, 杨忠鹏1, 徐晨雨4   

  1. 和与积相等的矩阵对及其多项式表示
  • 收稿日期:2012-12-31 出版日期:2013-09-26 发布日期:2013-09-17
  • 通讯作者: 杨忠鹏 E-mail:yangzhongpeng@126.com

Matrix Pair with the Sum and Product Being Equaland Its Polynomial Denotation

CHEN Meixiang1, LV  Hongbin2, FENG Xiaoxia3, YANG Zhongpeng1, XU Chenyu4   

  1. 1. Department of Mathematics, Putian University, Putian 351100, Fujian Province, China;2. School of Mathematics, Beihua University, Jilin 132033, Jilin Province, China;3. Department of Mathematics, Zhangzhou Normal University, Zhangzhou 363000, Fujian Province, China;4. School of Mathematics Sciences, Xiamen University, Xiamen 361005, Fujian Province, China
  • Received:2012-12-31 Online:2013-09-26 Published:2013-09-17
  • Contact: YANG Zhongpeng E-mail:yangzhongpeng@126.com

摘要:

用矩阵Jordan标准形理论, 证明了和与积相等的矩阵对的Jordan标准形具有互为确定的性质, 进而得到由和与积相等的矩阵对的最小多项式及交换子空间确定的
多项式表示的新结果.

关键词: 和与积相等的矩阵对, Jordan标准形, 多项式, 最小多项式

Abstract:

Applying the theory of Jordan canonical form, we proved the properties of Jordan canonical forms of the matrix pair with the sum and product being equal are determined mutually, obtaining the new results of polynomial denotation determined by minimal polynomial and commutative subspaces.

Key words: matrix pair with the sum and product being equal, Jordan canonical form, polynomial, minimal polynomial

中图分类号: 

  • O151.21