齐迎春1, 孙挺1,2
QI Yingchun1, SUN Ting1,2
摘要:
针对传统图像特征降维方法计算量大、 无法去除冗余信息、 未考虑相关性等缺陷, 提出一种结合快速主成分分析(FPCA)和ReliefF算法的图像特征降维方法. 该方法先利用FPCA[KG*6]算法对样本数据进行初次降维, 去除样本中的冗余信息; 再利用ReliefF算法计算样本特征的分类权重, 根据权重对特征进行组合优化. 在算法实现过程中, 采用递归排除策略, 进一步提升了算法特征寻优能力. 仿真实验表明, 利用本文算法优选出的图像特征, 可较好地提高聚类结果, 适合实际工程的应用.
中图分类号: