王玲娣, 徐华
WANG Lingdi, XU Hua
摘要: 为同时保证基分类器的准确性和差异性, 提出一种基于聚类和AdaBoost的自适应集成算法. 首先利用聚类算法将训练样本分成多个类簇; 然后分别在每个类簇上进行AdaBoost训练并得到一组分类器; 最后按加权投票策略进行分类器的集成. 每个分类器的权重是自适应的, 且为基于测试样本与每个类簇的相似性及分类器对此测试样本的分类置信度计算得到. 实验结果表明, 与AdaBoost,Bagging(bootstrap aggregating)和随机森林等代表性集成算法相比, 该算法可取得更高的分类精度.
中图分类号: