高云龙1,2, 左万利1,2, 王英1,2, 王鑫2,3
GAO Yunlong1,2, ZUO Wanli1,2, WANG Ying1,2, WANG Xin2,3
摘要: 针对短文本具有稀疏性强和文本长度较小等特性, 为更好地处理短文本分类问题, 提出一个基于集成神经网络的短文本分类模型. 首先, 使用扩展词向量作为模型的输入, 从而使数值词向量可有效描述短文本中形态、 句法及语义特征; 其次, 利用递归神经网络(RNN)对短文本语义进行建模, 捕获短文本内部结构的依赖关系; 最后, 在训练模型过程中, 利用正则化项选取经验风险和模型复杂度同时最小的模型. 通过对语料库进行短文本分类实验, 验证了所提出模型有较好的分类效果, 且该分类模型可处理变长的短文本输入, 具有良好的鲁棒性.
中图分类号: