吉林大学学报(理学版) ›› 2020, Vol. 58 ›› Issue (1): 90-94.

• 数学 • 上一篇    下一篇

基于免逆牛顿法的对称张量Z-特征对可信验证

桑海风, 李敏, 刘畔畔, 王春艳, 栾天   

  1. 北华大学 数学与统计学院, 吉林 吉林 132013
  • 收稿日期:2019-03-07 出版日期:2020-01-26 发布日期:2020-01-12
  • 通讯作者: 栾天 E-mail:luantian@163.com

Credibility Verification of Z-Eigenpairs of SymmetricTensors Based on InverseFree Newton’s Method

SANG Haifeng, LI Min, LIU Panpan, WANG Chunyan, LUAN Tian   

  1. College of Mathematics and Statistics, Beihua University, Jilin 132013, Jilin Province, China
  • Received:2019-03-07 Online:2020-01-26 Published:2020-01-12
  • Contact: LUAN Tian E-mail:luantian@163.com

摘要: 利用免逆牛顿法及区间算法理论, 研究对称张量Z-特征对的可信验证问题, 提出了一种计算Z-特征对的区间算法. 该算法通过输出一个近似Z-特征对及其相应的误差界, 使得在近似解的误差范围内必存在一个精确的Z-特征对.

关键词: 对称张量, 特征对, 可信性验证, 牛顿法

Abstract: By using the inversefree Newton’s method and the interval algorithm theory, we studied the credibility verification of Z-eigenpairs of symmetric tensors, and proposed an interval algorithm to calculate Z-eigenpairs. The algorithm output an approximate Z-eigenpair and its corresponding error bound, so that an exact Z-eigenpair of symmetric tensors must exist within the error range of the approximate solution.

Key words: symmetric tensor, eigenpairs, credibility verification, Newton’s method

中图分类号: 

  • O242.29