吉林大学学报(理学版) ›› 2020, Vol. 58 ›› Issue (1): 177-183.

• 生物科学 • 上一篇    下一篇

近红外光谱分析技术在监测L-异亮氨酸发酵过程中的应用

王森1, 王雪松2, 张昕1, 石国新1, 王健1   

  1. 1. 吉林大学 生物与农业工程学院, 长春 130022; 2. 吉林大学 生命科学学院, 长春 130012
  • 收稿日期:2019-03-26 出版日期:2020-01-26 发布日期:2020-01-12
  • 通讯作者: 王健 E-mail:wangjian99@jlu.edu.cn

Application of NearInfrared Spectroscopy inMonitoring Fermentation Process of L-Isoleucine

WANG Sen1, WANG Xuesong2, ZHANG Xin1, SHI Guoxin1, WANG Jian1   

  1. 1. College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China;
    2. College of Life Sciences, Jilin University, Changchun 130012, China
  • Received:2019-03-26 Online:2020-01-26 Published:2020-01-12
  • Contact: WANG Jian E-mail:wangjian99@jlu.edu.cn

摘要: 以L-异亮氨酸发酵过程的发酵液为样品, 用偏最小二乘法考察2种光谱采集方式、 7种光谱预处理方法及不同光谱波段选择对建立5种氨基酸光谱预测模型精度的影响. 通过建立L-异亮氨酸发酵过程中主副产物最佳光谱预测模型, 确定最佳光谱信息采集方式、 光谱预处理方法、 光谱波长范围及模型因子数. 结果表明: 反射扫描优于透射扫描获取光谱所建最佳预测模型; 反射光谱采集L-异亮氨酸、 L-丙氨酸、 L-谷氨酸、 L-亮氨酸和L-苏氨酸5种氨基酸最佳校正模型相关系数均大于0.96, 其交互验证均方差分别为1.760,0.462,0.430,0.259,0.199, 相对分析误差分别为7.8,6.8,6.3,5.0,6.4, 表明所提出的近红外光谱分析法快速检测氨基酸发酵液中各成分稳定可行.

关键词: 氨基酸检测, 近红外光谱, 光谱采集, 化学计量学

Abstract: Taking fermentation broth of fermentation process of L-isoleucine as the samples, using partial least square method, we investigated effects of two spectral acquisition methods, 7 spectral pretreatment methods and different spectral band selection on the accuracy of prediction models of 5 amino acids. By establishing the optimal spectral prediction model of the main and byproducts in the fermentation process of L-isoleucine, we determined the optimal spectral information acquisition method, spectral pretreatment method, spectral wavelength range and the number of factors of the model. The results show that the optimal prediction model of the spectrum obtained by reflection scanning is superior to that of transmission scanning. The correlation coefficients (Rc) of the optimal correction model of L-Ile, L-Ala, L-Glu, L-Leu and L-Thr are all greater than 0.96, the root mean square error of cross validation (RMSECV) are 1.760,0.462,0.430,0.259,0.199, and the residual predictive deviation (RPD) are 7.8,6.8,6.3,5.0,6.4, respectively. 
Therefore, the proposed near infrared spectroscopy is stable and feasible for rapid detection of various components in amino acid fermentation broth.

Key words: amino acid detection, nearinfrared spectroscopy, spectral acquisition, chemometrics

中图分类号: 

  • Q433.4