吉林大学学报(理学版) ›› 2020, Vol. 58 ›› Issue (2): 379-387.

• 计算机科学 • 上一篇    下一篇

基于局部时空模式的体育视频行为识别

温长吉, 赵珊珊, 申利未, 任虹宾   

  1. 吉林农业大学 信息技术学院, 长春 130118
  • 收稿日期:2019-04-12 出版日期:2020-03-26 发布日期:2020-03-25
  • 通讯作者: 温长吉 E-mail:chagou2006@163.com

Sports Video Behavior Recognition Based on Local SpatioTemporal Pattern

WEN Changji, ZHAO Shanshan, SHEN Liwei, REN Hongbin   

  1. College of Information Technology, Jilin Agricultural University, Changchun 130118, China
  • Received:2019-04-12 Online:2020-03-26 Published:2020-03-25
  • Contact: WEN Changji E-mail:chagou2006@163.com

摘要: 针对视频行为识别中由于目标相互遮挡及环境背景的复杂性等因素进行多目标跟踪存在的问题, 提出一种将局部模式活跃度判别模型用于视频中活跃个体的检测和定位方法, 解决了基于轨迹方法中由于遮挡导致轨迹提取不完整或背景过于复杂等因素导致的识别准确度较低的问题. 将该模型分别应用在2012年欧洲杯足球赛和2013—2014赛季西班牙甲级足球联赛38场比赛关联进球事件的视频段上, 得到平均准确率为91.3%的较好结果. 实验结果验证了该方法对视频中目标物行为识别具有较高的准确性和实用性.

关键词: 视频行为识别, 局部时空回归核,  , 特征词袋模型, 活跃度判别

Abstract: Aiming at the problem of multitarget tracking in video behavior recognition, due to the mutual occlusion of the target and the complexity of the environment background, we proposed a method to detect and locate active individuals in video by using a local pattern activity discrimination model, which solved the problem of low recognition accuracy caused by factors such as incomplete trajectory extraction or too complicated background due to occlusion in the trajectorybased method. The model was applied to the video segments of the UEFA Euro 2012 and the 2013—2014 season Spanish League One 38 matches associated with the goal event, and the average accuracy rate was 91.3%. The experimental results show that the method has high accuracy and practicability for the recognition of target behaviors in videos.

Key words: video behavior recognition, local spatiotemporal regression kernel, feature word bag model, activity discrimination

中图分类号: 

  • TP391.41